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Abstract—Traditional image segmentation methods working
with low level image features are usually difficult to adapt
to higher level tasks, such as object recognition and scene
understanding. Object segmentation emerges as a new challenge
in this research field. It aims at obtaining more meaningful
segments related to semantic objects in the scene by analyzing
a combination of different information. 3D point cloud data
obtained from consumer depth sensors has been exploited to
tackle many computer vision problems due to its richer in-
formation about the geometry of 3D scenes compared to 2D
images. Meanwhile, new challenges have also emerged as the
depth information is usually noisy, sparse and unorganized. In
this paper, we present a novel point cloud segmentation approach
for segmenting interacting objects in a stream of point clouds by
exploiting spatio-temporal coherence. We pose the problem as an
energy minimization task in a fully connected conditional random
field with the energy function defined based on both current and
previous information. We compare different methods and prove
the improved segmentation performance and robustness of the
proposed approach in sequences with over 2k frames.

I. INTRODUCTION

Segmentation is an essential task in computer vision. It
usually serves as the foundation for solving higher level
problems such as object recognition, interaction analysis and
scene understanding. Traditionally, segmentation is defined
as a process of grouping homogeneous pixels into multiple
segments on a single image, which is also known as low level
segmentation. Low level approaches usually rely on features,
such as color, texture, spatial relations between pixels on the
image etc. to obtain segments which are somehow more ho-
mogeneous and more perceptually meaningful than raw pixels.
Based on that, the concept of object segmentation is proposed.
It is devoted to segment an image into regions which ideally
correspond to meaningful objects in the scene. Contrarily
to the low level segmentation tasks, object segments in the
scene are not always related to a set of homogeneous pixels
in the low level feature space, since an object may contain
parts with very different appearance, be partially occluded
by other objects or change its appearance with respect to the
illumination. In this situation, more information is needed for
tackling the problems in the object segmentation task.

A. High level knowledge
High level knowledge is usually incorporated into the seg-

mentation process to globally represent objects. For instance,

(a) (b) (c)

Fig. 1. Point cloud segmentation in robotic arm grasping application. (a)
Color image, pixels not related to valid depth value are removed. (b) Depth
map, distance to the camera from close to far is marked with color from cold
to warm. (c) Segmentation on a point cloud, different objects are marked with
different color

object models are used in object segmentation for constrained
scenes like human body detection [1]. However, most com-
puter vision applications involve large amounts of data with
different types of scenes containing several objects, which
makes model based methods difficult to be adapted. In [2],
accurate object annotation in the first frame is required to
initially represent the objects in the scene for a video sequence.
Propagating this representation along time provides a prior
knowledge about the objects for the coming frames. More
generally, some methods attempt to leverage the high level
knowledge in more a generic fashion, such as [3], [4]. They
train a classifier to determine whether an image region is an
object-like region or not, which makes the approaches more
generic to different types of objects and scenes. But these
approaches strongly rely on the supporting of a large amount
of labeled training data, which may not be available in some
cases, such as with the relatively new consumer depth sensors.

B. Temporal Information

The object segmentation task is usually tackled by em-
ploying temporal information when stream data is available,
which is also known as video object segmentation. The tem-
poral information serves as a hint for object segmentation
in each frame, since pixels that belong to the same object
are more likely to exhibit certain temporal coherence. For
instance, Grundmann et al [5] use a graph-based model to
hierarchically represent the spatio-temporal correspondences
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between segments in the over-segmented frames and obtain
a consistent video object segmentation by analyzing the hi-
erarchy. Abramov et al [6] perform label transfer for pixels
between frames by using optical flow. Then, they minimize
the label distribution energy in the Potts model to generate
labels for objects in the scene.

C. Depth Information

Segmentation methods based on 2D images are limited, as
a lot of valuable information about the shape and geometric
layout of objects is lost when a 2D image is formed from the
corresponding 3D world. The emergence of cheap consumer
depth sensors, like Kinect, makes it easier to access depth
information. This offers the potential to segment objects
considering the richer geometric information in actual 3D.
Problems such as occlusion and background removal are
also easier to be tackled in 3D than in 2D images due to
the extra dimension obtained from depth. Depth information
provides the possibility to easily eliminate the background and
focus on segmenting the interacting objects in the foreground,
especially for object segmentation in applications such as
vision based robotic arm grasping (shown in Fig.1) or semantic
analysis in a smart room. However, 3D data also brings new
challenges, because point clouds are usually noisy, sparse and
unorganized. Furthermore, the lack of ground truth labeling
for 3D point clouds also impairs the learning based approaches
which require a large number of training data. In this situation,
combining depth and temporal information emerges as a
promising way to deal with the object segmentation task.
Hickson et al [7] extend the hierarchical graph based method
in [5] to RGBD stream data, in which depth maps are used to
build another hierarchy similar to the color based one proposed
in [5]. Abramov et al [8] obtained better results by introducing
depth information in their label transfer approach [6]. In [9],
we propose to model the 3D point cloud segmentation task
as a labelling problem with a Conditional Random Field
(CRF) model. We exploit temporal information by defining
the energy function in the CRF model with respect to the
object segmentation in the previous frame.

In this paper, we present a segmentation method for seg-
menting interacting foreground objects in applications like
human manipulation in a smart room or robot arm grasping
based on RGB-D stream data. In these applications we deal
with a static camera targeting a specific space of interest
which can be easily separated from the background using
depth information. The aim is to segment the foreground area
into time-consistent regions. This segmentation will allow to
study the interactions of the objects in this area of interest.
Our segmentation approach is initialized with the object mask
in the first frame, which can be obtained automatically if the
objects are spatially separated in the first frame. Apart from
the first frame, we first extract the foreground region in the
current frame, then we model the multi-objects foreground
segmentation problem as an energy minimization task in a
Fully Connected Conditional Random Field (FC-CRF) model.
The energy function of FC-CRF is defined on both the object

segmentation in the previous frame and current frame. It is
optimized following an efficient inference method proposed
in [10] to generate current object segmentation. We also
compare different methods for achieving the time-consistent
segmentation based on RGB-D stream data. We prove that the
best results are obtained using Fully-Connected Conditional
Random Field (FC-CRF) applied on super-voxels. We verify
that super-voxels are more robustness than pixel based meth-
ods. We also show the improvement achieved using FC-CRF
with respect to CRF.

II. GRAPH BASED OBJECTS SEGMENTATION

The goal of multi-class image segmentation is to label every
pixel in the image with one of several object categories. A
common approach is to pose this problem as a graph segmenta-
tion problem. The graph is usually defined over pixels or image
patches with the edges representing their spatial connectivity
and the weight of the edges representing the similarity between
them. Based on the graph representation, the minimum cut
on the graph is searched to obtain several sub-graphs which
are weakly connected to each other. These sub-graphs are
assumed to be related to the objects in the image. Graph cut
methods perform multi-class image segmentation without any
prior information. However, when some prior information is
available, the graph segmentation problem is usually posed
as maximum a posteriori (MAP) inference in a Conditional
Random Field (CRF)[11]. The CRF incorporates a pairwise
energy term that maximizes label agreement between similar
nodes on the graph, and a unary energy defined on each node
representing the degree of belief that it belongs to each of
the object categories with respect to the prior information.
However, the pairwise energy is usually only computed for
neighboring nodes on the graph in CRF, which makes the
boundaries between different labels favor the thinner part of
the graph with less edges. To overcome this limitation, Koltun
et al [10] propose to employ Fully Connected CRF (FC-CRF)
for image segmentation, in which all nodes on the graph are
connected and the pairwise energy is established on any pair
of nodes on the graph, which makes the shape of the graph less
critical to the optimal labelling of the graph. They minimize
the energy in FC-CRF using an efficient message passing
implementation based on the mean fields approximation and
high dimensional filtering.

III. DATA ACQUISITION AND FOREGROUND EXTRACTION

Given the color and depth data captured by a consumer
depth sensor, we can transform the per pixel distances provided
in the depth image into a 3D point cloud CI ⊆ R3 with
the camera parameters. As we are more concerned about the
foreground cloud Cfg ⊆ R3, we focus on the points in a
Space of Interest (SoI). We define the SoI by manually setting
a rectangular bounding box for each application. Points in the
SoI are then treated as the foreground point cloud.

We need an initial object mask from which the time con-
sistent segmentation of interacting objects will be built. This
initial mask can be extracted automatically if the objects are
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separated in the initial frame by a simple connectivity analysis
[12]. Otherwise, the initial mask has to be provided manually
or by an external segmentation method.

IV. PIXEL LEVEL SEGMENTATION IN RGB-D STREAM
DATA

One possible approach for object segmentation in 3D point
cloud is to extend the FC-CRF method for 2D images to 3D
point clouds, since they are ”1 to 1” related. We denote this
extended method as Pixel Level Fully Connected Conditional
Random Field (P-CF-CRF). In practice, the energy function in
P-FC-CRF is modeled as the summation of a unary energy and
a pairwise energy. We define the unary energy for each pixel (a
point on the point cloud) with respect to the prior information,
thus the object segmentation in the previous frame, and the
pairwise energy based on similarity between pixels in color
and location.

E (L) =
∑

vi∈v,li∈l

Eu (vi, li) +
∑

vi,vj∈v
Ep (vi, vj) (1)

where li ∈ L represents the label for a 3D point on the point
cloud (a pixel) vi.

We define the unary energy of labelling point vi with
object label oj , Eu (vi, li = oj) proportional to the mean 3D
Euclidean distance between point vi in the current point cloud
and the k nearest points labeled by oj in the previous point
cloud. We compare the distance based unary energy with
a more complicated unary energy term defined on multi-
features (color, location and local shape) in the experiment
section. It proves that FC-CRF allows to achieve comparable
segmentation performance with simple energy terms like the
distance based unary energy. For the pairwise energy, we
extend the one defined in [10] for pixels on 2D image to an
energy which is suitable for nodes representing 3D points.
Specifically, we adopt an appearance and an smoothness term
balanced with weights ω1 and ω2. The appearance energy term
is defined as the 3D Euclidean distance de (vi, vj) between
points vi and vj , and the color difference drgb (vi, vj) between
them in the Gaussian kernel exp

(
−d(·)2σ2

)
. The smoothness

energy term is defined as the 3D Euclidean distance between
the two points in the Gaussian kernel. That is:

Ep (vi, vj) =ω1 exp

(
−de (vi, vj)

2σ2
α

− drgb (vi, vj)

2σ2
β

)

+ ω2 exp

(
−de (vi, vj)

2σ2
γ

) (2)

The appearance term favours nearby points in the 3D space to
be in the same class if they have similar color. The smoothness
term removes isolated regions, as in [10]. As shown in Eq.2,
ω1 and ω2 are used to balance the appearance energy and
smoothness energy. σα, σβ and σγ control the ”scale” of the
Gaussian kernel. In our experiments, ω1 and ω2 are set to 0.6
and 0.4 empirically. σα and σγ are set to 0.3 meter with respect
to its physical meaning. We set σβ to 13 following [10]. The
energy function in Eq.1 is minimized using the mean fields

(a) (b)

Fig. 2. An example of the super-voxels generated in our approach from a point
cloud. (a) The original point cloud. (b) The super-voxels, each super-voxel is
marked with a random color.

approximation and high dimensional filtering proposed in [10].
The optimum represents the best labelling on the graph, which
also corresponds to the object segmentation of the point cloud.

V. SUPER VOXEL CONSTRUCTION IN RGB-D DATA

In an image segmentation task, a mid-level representation
is often employed to improve the robustness to noise in the
raw data while keeping sufficient information of the image
structure and flexibility for image segmentation. In particular,
super-pixels is one of the most promising mid-level represen-
tations in image segmentation [13], [14]. These methods group
homogeneous pixels on an image into super-pixels while pre-
serving explicit boundary information of object parts. Similar
to super-pixel methods, there are also several 3D approaches
working on grouping 3D points represented by local features
into meaningful 3D segments based on RGB-D data, such
as super-voxels [15], or region growing method [16]. They
usually preserve better object boundaries than similar 2D
methods due to significative boundary information provided
by depth maps. In [9], several mid-level representations are
compared in a point cloud segmentation task. The super-voxel
method proposed in [15] proved to be the best representation
among the methods tested. It is based on first voxelizing the
3D points obtained from RGB-D data in the 3D space, then
grouping the voxels into super-voxels with respect to their
proximity in 3D space, color similarity and local 3D shape
similarity. Thus, we employ the method in [15] to generate
super-voxels in our approach. Fig.2 shows an example of
super-voxels (labelled in random color) obtained from the
original point cloud.

VI. SUPER VOXEL LEVEL SEGMENTATION WITH IN
RGB-D STREAM DATA

The obtained super-voxels are more perceptually meaning-
ful than raw pixels. Performing object segmentation at the
super-voxel level has a smaller problem scale and is more
robust to noise in the raw data. In Sec. IV, we have proposed
an extension of FC-CRF to segment point clouds. In this
Section we propose to apply the FC-CRF at the super-voxel
level, thus working with the complete super-voxel graph. The
energy function here is defined in the same manner than in
Sec.IV. The unary energy for each super-voxel is calculated
with respect to the object segmentation in the previous frame,
and the pairwise energy is computed as the similarity between
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Seq. No. nFrames CRF P-FC-CRF S-FC-CRF
1 601 94.65 94.34 97.93
2 425 96.02 95.07 97.42
3 747 95.72 93.30 97.15
4 291 94.72 94.04 96.50
average 516 95.27 94.19 97.25

TABLE I
MEAN IOUS IN 4 SEQUENCES OF RGBD VIDEOS PRODUCED BY METHOD

IN [9], P-FC-CRF AND S-CF-CRF

super-voxels in color and location. Since a super-voxel repre-
sents a set of 3D points, we define the location for a super-
voxel as the centroid of the related set of 3D points and the
color as the mean color of the 3D points.

VII. EXPERIMENTS

To evaluate the proposed 3D point cloud segmentation
method, we employ 4 sequences in the Human Manipulation
dataset [17] with the ground truth labelling provided in [9].
These 4 sequences focus on scenes where a human interacts
with multiple foreground objects, and contain over 2k frames
with challenges like occlusion, fast moving objects and multi-
objects interaction. The ground truth provides object labels for
points on the point cloud in all the sequences. The evaluation
metrics is Intersection over Union (IOU) on point cloud,
defined as follows:

IOU =
1

Mo

Mo∑
m=1

max
i

GTm ∩Oi
GTm ∪Oi

(3)

For each frame, Mo stands for the number of objects labeled
in the ground truth, GTm is the ground truth for object m and
Oi represents an object segmentation in this frame.

In a first experiment, we verify the performance of three
point cloud segmentation methods, which are Conditional
Random Field based method (CRF) proposed in [9], Pixel
level (Sec.IV), and Super-voxel level (Sec.VI) Fully Connected
Conditional Random Field based methods proposed in this
paper (P-FC-CRF,S-FC-CRF respectively), with accurate prior
information. For this initial verification we perform each frame
segmentation based on the ground truth object labeling of the
previous frame. Table I shows the segmentation performance
of these three methods. S-FC-CRF achieves the best results
in all sequences and obtains 2% improvement in total with
respect to CRF based method in [9].

In the second experiment, we analyze the segmentation error
for the whole sequence when we initialize the system with
ground truth object labelling only for the first frame in each
of the 4 sequences. We analyze in Fig.3 the accumulated error
in this situation. The P-FC-CRF method is not compared in
this experiment due to its limited robustness to the accumu-
lated segmentation error, which we justify in the following
experiment. Fig.3 shows the segmentation result from CRF
and S-FC-CRF (marked in red and blue respectively), in which
we shows the mean IOU in the vertical axis over the frames
up to frame t in the horizontal axis. The curve represents the
trend of the segmentation performance. Our S-FC-CRF based
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Fig. 3. Segmentation performance shown as mean IOU (vertical axis) over n
frames (horizontal axis) in 4 different sequences. Red: method in [9]. Blue:
S-FC-CRF.
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Fig. 4. Segmentation performance verification: (a) on robustness to segmen-
tation error for P-FC-CRF in green compared to CRF and S-FC-CRF in red
and blue, (b) on employing different unary energy in S-FC-CRF, shown as
mean IOU (vertical axis) over n frames (horizontal axis). Blue: S-FC-CRF
with unary energy defined based only on difference in location. RED: S-FC-
CRF with unary defined based on difference in color, local surface normal
and location.

method keeps the segmentation performance at a higher level
of mean IOU while also decaying slower than the CRF based
method, which proves its stronger robustness with respect to
the accumulated segmentation error.

In Fig.4(a), we show the performance of P-FC-CRF in
the same manner than Fig.3. Compared to CRF and S-FC-
CRF methods, it decays from 1 to 0.7 within around 30
frames, which also proves that the super-voxel representation
employed in CRF and S-FC-CRF provides some robustness to
the accumulated segmentation error.

As mentioned in Sec.IV, we evaluate the impact of em-
ploying different unary energies in FC-CRF. Specifically, we
compare the unary energy defined only based on distance
in our approach with a more complex unary energy which
includes color, local surface normal and location in the S-FC-
CRF method. Fig.4(b) illustrates that using the simple distance
based unary energy achieves comparable segmentation perfor-
mance (0.2% lower) than the more complex one.

Fig.5 presents some qualitative results of the CRF method
and the proposed S-FC-CRF method. Each row in Fig.5 shows
the point cloud segmentation in one frame. In Fig.5(b), the
segmentation in CRF method favors the thinner part of the
graph with less edges on the wrist, which leads the segmenta-
tion error on the palm. However our S-FC-CRF based method
provides better segmentation on the boundary due to the fact
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Qualitative results. First column: color images, second column: results
from [9], third column: results from S-FC-CRF

(a) (b) (c)

Fig. 6. Qualitative results from S-FC-CRF for robotic arm grasping.

that fully connected structure make the graph shape less criti-
cal for segmentation (shown in Fig.5(c)). A similar example is
presented in the second row. We also show the potential of the
proposed approach in a robotic arm grasping task. We applied
the proposed method on a RGB-D sequence captured in the
scene where a robotic arm moves to grasp objects on the table.
Qualitative results are shown in Fig.6. More visual results are
available on: https://imatge.upc.edu/web/node/1868.

Apart from the evaluation on segmentation performance, we
compare the computation cost among CRF, S-FC-CRF and
P-FC-CRF by calculating the average time cost per frame
for segmenting 600 frames. Table II shows that CRF based
method has the lowest average computation cost, however the
computation cost in S-FC-CRF is also well handled by the
efficient inference method proposed in [10], which achieves
higher segmentation accuracy in similar time.

VIII. CONCLUSION

In this paper, we have introduced a temporally consistent
3D point cloud segmentation method, in which we pose the
segmentation task as energy minimization in a fully connected
conditional random field. We define the unary energy term
based on previous information for a super-voxel representation
of a point cloud to impose temporal coherence while exploiting
the pairwise energy established on the complete set of nodes to
reduce the critical impact of the graph shape in segmentation.

CRF S-CF-CRF P-CF-CRF
0.015s 0.021s 0.07s

TABLE II
COMPUTATION COST

The evaluation of the proposed approach is done quanti-
tatively over 2k frames. Comparisons are made between the
method in [9] and the proposed method, which illustrates the
stronger robustness and better segmentation performance of
the proposed approach. We achieve 2% and 4% improvement
respectively in the first two experiments shown in Sec.VII with
respect to method in [9]. We also show the potential of the
proposed approach in an application of robotic arm grasping.
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