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Abstract—The Euclid satellite aims to measure accurately the
global properties of the Universe, with particular emphasis on
the properties of the mysterious Dark Energy that is driving the
acceleration of its expansion. One of its two main observational
probes relies on accurate measurements of the radial distances
of galaxies through the identification of important features
in their individual light spectra that are redshifted due to
their receding velocity. However, several challenges for robust
automated spectroscopic redshift estimation remain unsolved,
one of which is the characterization of the types of spectra
present in the observed galaxy population. This paper proposes a
denoising technique that exploits the mathematical frameworks
of Sparse Representations and Coupled Dictionary Learning,
and tests it on simulated Euclid-like noisy spectroscopic tem-
plates. The reconstructed spectral profiles are able to improve
the accuracy, reliability and robustness of automated redshift
estimation methods. The key contribution of this work is the
design of a novel model which considers coupled feature spaces,
composed of high- and low-quality spectral profiles, when ap-
plied to the spectroscopic data denoising problem. The coupled
dictionary learning technique is formulated within the context
of the Alternating Direction Method of Multipliers, optimizing
each variable via closed-form expressions. Experimental results
suggest that the proposed powerful coupled dictionary learning
scheme reconstructs successfully spectral profiles from their
corresponding noisy versions, even with extreme noise scenarios.

I. INTRODUCTION

The Euclid satellite1 is a space mission currently under
development by the European Space Agency (ESA) [1]. It
aims to improve our understanding of the evolution and of the
major constituents of the Universe over the past 10 billion
years. It will focus on two main cosmological probes: the
spatial correlations of galaxy shape distortions from the weak
gravitational lensing effect due to the total dark matter distribu-
tion along the photon paths, and the 3D correlation function
of galaxy positions, which tracks the characteristic scale of
primordial baryonic acoustic oscillations (BAO) imprinted in
the galaxy distribution. This latter measurement, in particular,
requires a large number of exquisite redshift measurements
to allow a precise determination of the radial distances of
galaxies. To that effect, Euclid will perform a spectroscopic

1http://sci.esa.int/euclid/

survey of over 50 million galaxies with slitless spectroscopy
in the near-infrared wavelength range.

Spectroscopic redshift estimation from Euclid data presents
several complex challenges. Current redshift estimation tech-
niques [2], [3] possess limited efficiency in the low signal-
to-noise regime in which Euclid will observe most of the
high-redshift galaxies. In particular, one of the main sources
of systematic uncertainties is the definition of the spectral
energy distributions (SEDs) templates required by the most
redshift estimation methods. For cross-correlation techniques
to work appropriately, the SED template library needs to be
representative of the existing dataset, otherwise the chosen
best-fit template and redshift might not be correct. Existing
SED libraries, mostly defined from lower redshift surveys, may
suffer from such representativeness problems in ways that are
hard to quantify. Additionally, these SEDs have been observed
with different instruments, under a wide range of observational
conditions, that might not be extensible to unknown regimes.
Therefore, a new instrument like Euclid’s slitless spectrograph,
probing a much less explored high-redshift regime, is vul-
nerable to the impact of previously uncharacterised selection
effects in the SED libraries.

Enhancing galaxy spectra has been a subject of significant
research for many years. Recently, the authors in [4], pro-
posed a sparse-based denoising technique for hyperspectral
astrophysical data, adhering to the specificities of the MUSE
instrument2. Another spectroscopic enhancement technique
was developed in [5] where the authors tackle the problem of
joint signal restoration and parameter estimation of the MUSE
instrument, using a sparsity regularization technique, based on
the Iterative Coordinate Descent (ICD) principle. Additionally,
the authors in [6] examine the problems of deconvolution and
denoising of spectroscopic data.

In this work we focus on the enhancement of Euclid-like
simulated spectroscopic data. Specifically, this paper employs
the concept of spectroscopic data denoising, where noisy and
clean training examples are used within a computational learn-
ing framework to enhance the degraded spectroscopic data. Us-

2https://www.eso.org/sci/facilities/develop/instruments/muse.html
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Fig. 1: Proposed system’s block diagram: The system takes as input an acquired noisy spectral profile and produces an estimate of its
denoised version. During the training phase, multiple “clean” and noisy spectral templates are utilized. Given these signal pairs, a coupled
dictionary learning scheme is employed for learning two dictionaries, corresponding to the two different noisy scenarios. During the testing
phase, noisy spectral profiles are mapped to the noisy dictionary and the identified sparse coding coefficients are subsequently combined
with the denoised dictionary for producing the denoised estimates.

ing a dual dataset, consisting of clean and noisy matched signal
samples, we are able to learn the spectral energy distributions
directly from the data, and subsequently use them for redshift
estimation. In order to validate the reconstruction performance,
we test our method with a set of fully clean simulated Euclid-
like spectra, matched to corrupted versions with different
noise levels. The proposed algorithm capitalizes on the Sparse
Representations framework [7] and extents it by introducing
a Coupled Dictionary Learning process for reconstructing
the clean spectra data from their equivalent noisy versions.
Furthermore, we solve the galaxy spectra denoising problem
within the highly efficient Alternating Direction Method of
Multipliers optimization framework [8], [9]. Figure 1 presents
the proposed system’s block diagram.

The rest of this paper is structured as follows. Section II
provides the proposed spectroscopic-data denoising technique
considered in this work, whereas Section III describes the
associated coupled dictionary learning formulation. Section
IV reports the experimental results, while conclusions and
extensions of this work are presented in Section V.

II. DENOISING OF SPECTROSCOPIC DATA

Our approach synthesizes a denoised spectral profile from
its corresponding acquired noisy version by capitalizing on
the Sparse Representations (SR) learning framework [7].
According to the SR framework, various spectral profiles
can be represented as sparse linear combinations of a few
elements from learned over-complete dictionaries. Traditional
approaches consider a set of noisy and denoised signal pairs
and assume that these signals are generated by the same
statistical process under different noise conditions, and as such,
they share approximately the same sparse coding, with respect
to their corresponding noisy Dn ∈ RM×N , and denoised
Dc ∈ RM×N dictionaries. Each input noisy spectral template
sn ∈ RM can thus be expressed as a sparse linear combination,
encoded in w ∈ RN , of elements from a dictionary matrix,
Dn ∈ RM×N , composed of training noisy spectral profiles,
according to: sn = Dnw.

Although the `0-norm is theoretically the best regularizer
for promoting sparsity, it leads to an intractable optimization.
This problem is alleviated by replacing the `0-norm by its
convex surrogate `1-norm, leading to robust solutions. The
optimization problem is therefore formulated as:

w? = arg min
w
||sn −Dnw||2F + ρ||w||1, (1)

where ρ stands for a regularization parameter, that balances the
fidelity of the solution. To obtain the denoised spectral profile,
the optimal sparse code w? from (1), is directly projected
onto the clean dictionary Dc ∈ RM×N , to synthesize the
denoised spectral profile, according to sc = Dcw

?. The two
main challenges pertaining to the estimation of the denoised
spectral profiles are related to the sufficient sparsity measure
for the sparse coding vector w and the proper construction
of the dictionary matrices, to efficiently sparsify the input
signals. The following section describes explicitly the coupled
dictionary procedure developed in this work.

III. COUPLED DICTIONARY LEARNING

Coupled Dictionary Learning relies on generating a pair of
dictionaries which jointly encode the noisy, Sn and the clean
Sc feature spaces, where the signals have sparse represen-
tations in terms of the trained dictionaries [10]. The main
task is to find a coupled dictionary pair Dn and Dc for
the spaces Sn and Sc, respectively [7]. Formally, one such
pair, can be estimated by solving the following set of sparse
decompositions:

argmin
Dc,Dn,Wc,Wn

||Sc −DcWc||2F + ||Sn −DnWn||2F + (2)

λc||Wc||1 + λn ||Wn||1, subject to Wc = Wn,

||Dc(:, i)||2 ≤ 1, ||Dn(:, i)||2 ≤ 1

where Wn and Wc correspond to the sparse coefficient
matrices for the noisy and clean feature spaces respectively,
while λn and λc denote the sparsity regularization parameters.
A straightforward approach is to concatenate the coupled
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feature spaces and utilize a common sparse representation W,
able to reconstruct both Sc and Sn, by solving:

argmin
D,W

||S̄− D̄W||F + λ||W||1 (3)

subject to ||D̄(:, j)||22 ≤ 1, j = {1, ...,K},

where S̄ =

[
Sc

Sn

]
, D̄ =

[
Dc

Dn

]
, and λ is the sparsity

regularization term. As a result, the problem posed in (2) is
converted into a standard sparse dictionary learning problem,
which can be efficiently solved via existing algorithms, such
as the K-SVD [11]. However, a major limitation of single
dictionary learning strategies, is their inability to guarantee
that the same sparse coding can be independently utilized by
the different signal resolutions.

In order to overcome this limitation, we propose a com-
putationally efficient Coupled Dictionary Learning technique,
based on the Alternating Direction Method of Multipliers
(ADMM) [8], [9], that converts the constrained dictionary
learning problem in (2), into an unconstrained version which
can be efficiently solved via alternating minimizations. The
main task of coupled dictionary learning is to recover both the
dictionaries Dn and Dc with their corresponding sparse codes
Wn and Wc, under the constraint Wn = Wc, by solving the
following sparse matrix decomposition problems:

argmin
Dc,Wc

||DcWc − Sc||F + λc||Wc||1, ||Dc(:, j)||22 ≤ 1 (4)

argmin
Dn,Wn

||DnWn − Sn||F + λn||Wn||1, ||Dn(:, j)||22 ≤ 1,

To apply the ADMM technique in our dictionary learning
scheme, we reformulate the minimization problem in (4) as:

min
Dc,Wc,Dn,Wn

||Sc −DcWc||2F + ||Sn −DnWn||2F + (5)

λn||Q||1 + λc||P||1, subject to: P = Wc,Q = Wn,

Wc = Wn, ||Dc(:, i)||22 ≤ 1, ||Dn(:, i)||22 ≤ 1

The ADMM technique takes into account the separate struc-
ture of each variable in (5), relying on the minimization of its
augmented Lagrangian function:

L(Dc,Dn,Wc,Wn,P,Q, Y1, Y2, Y3) =

1

2
||DcWc − Sc||2F +

1

2
||DnWn − Sn||2F + λc||P||1+

λn||Q||1+ < Y1,P−Wc > + < Y2,Q−Wn > +

< Y3,Wc −Wn > +
c1
2
||P−Wc||2F +

c2
2
||Q−Wn||2F +

c3
2
||Wc −Wn||2F , (6)

where Y1, Y2, and Y3 stand for the Lagrange multiplier
matrices, while c1 > 0, c2 > 0, and c3 > 0 denote the step
size parameters. We empirically set the step size parameters
to c1 = c2 = 0.4 and c3 = 0.8. Following the algorithmic
strategy of the ADMM scheme, we seek for the stationary
point, solving iteratively for each one of the variables, while
keeping the others fixed. The overall algorithm for learning

the coupled dictionaries is summarized in Algorithm 1.

Algorithm 1 Coupled Dictionary Learning
Input: training examples Sc and Sn, iterations: K, step size param-
eters: c1, c2, c3.
Initialize: Dc ∈ RM×N and Dn ∈ RM×N : random selection of the
columns of Sc and Sn ; Initialization of Lagrange multiplier matrices:
Y1 = Y2 = Y3 = 0.
for k = 1, · · · ,K do

1) Update Wc and Wn:

Wc = (D
T
c Dc + c1I + c3I)

−1 · (DT
c Sc + Y1 − Y3 + c1P + c3Wn)

Wn = (D
T
nDn + c2I + c3I)

−1 · (DT
nSn + Y2 + Y3 + c2Q + c3Wc)

2) Update P and Q:
P = Sλc

(∣∣∣Wc − Y1/c1

∣∣∣)
Q = Sλn

(∣∣∣Wn − Y2/c2

∣∣∣),
3) for j = 1, · · · , N do

• Update φc and φn:
φc = Wc(j, :)Wc(j, :)

T

φn = Wn(j, :)Wn(j, :)
T

• Update the dictionaries Dc and Dn:
D(k+1)
c (:, j) = D(k)

c (:, j) + (ScWc(j, :))/(φc + δ)

D(k+1)
n (:, j) = D(k)

n (:, j) + (SnWn(j, :))/(φn + δ)

end
• Normalize Dc and Dn between [0, 1]
• Update Lagrange multiplier matrices Y1, Y2 and Y3:

Y
(k+1)
1 = Y

(k)
1 + c1(P−Wc)

Y
(k+1)
2 = Y

(k)
2 + c2(Q−Wn)

Y
(k+1)
3 = Y

(k)
3 + c3(Wc −Wn)

end

IV. EXPERIMENTAL SETUP

In this Section, we evaluate the performance of the proposed
denoising scheme when applied to spectroscopic data in terms
of the quality of the reconstructed signals. Experimental results
provided in this work consider noisy Euclid-like simulated
spectral templates. Specifically, we examine the proposed
algorithm’s reconstructions under various noise scenarios. In
the next paragraph, we explicitly describe the dataset and the
generated noisy spectra templates.

A. Generating Euclid-like simulated templates

Euclid will observe an estimated 50 million spectra through
slitless spectroscopy, in the wavelength range 1.1 − 2.0µm
with a mean resolution R = 250, where R ≡ λ/∆λ. The
required sensitivity is defined in terms of the significance
of the detection of the Hα Balmer transition line: an unre-
solved (i.e. sub-resolution) Hα line of spectral density flux
3 × 10−16 erg cm−2 s−1 is to be detected at 3.5σ above the
measurement’s noise. These requirements imply a detection
rate that depends on magnitude and redshift, and Euclid will
mostly detect galaxies in the redshift range 0.7 < z < 2.0 [1].

According to these requirements, we simulate a distribution
of galaxies with realistic photometric observational distribu-
tions, such as redshift, color, magnitude and spectral type, and
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(a) Clean Spectral Profile (b) High SNR (c) Medium SNR (d) Low SNR

Fig. 2: High, medium, and low SNR uncorrelated Gaussian noise added to a simulated resampled and integrated spectrum

also taking into consideration the spectral energy distributions
and the emission-line strengths. First, we define a master
catalog for the analyses, with the COSMOSSNAP simulation
pipeline [12], which calibrates property distributions with real
data from the COSMOS survey [13], thereby ensuring that
realistic relationships between galaxy type, color, size, redshift
and SED are preserved. As a result, we have constructed a
master galaxy catalogue with magnitudes, colors, shapes and
photometric redshifts for 538.000 galaxies on a 1.38 deg2

region of the sky down to an i-band magnitude of ∼ 24.5.

B. Simulating the noise conditions

In order to create the noisy dataset, we select a 50% random
subset of the galaxies that are below redshift z = 1 with
Hα flux above 10−16 erg cm−2 s−1, and bring them to rest-
frame values (z = 0). We then create three matched noisy
cases, by adding white Gaussian noise, of high SNR, medium
SNR and low SNR, all sharing a common clean dataset.
This simplified noise is not fully representative of all the
observational aspects of Euclid observations. Nonetheless, we
calibrate the noise variance in terms of the SNR of the Hα flux,
ensuring that these values correspond to expected Euclid SNR
values. We split each of these three coupled datasets into 70%
for training, and 30% for testing sets. The training sets use both
the clean and noisy versions to train the proposed dictionary
learning technique, while the testing is only composed by the
noisy signals, to which the trained pipeline will be applied in
order to evaluate the performance of the proposed algorithm.
Fig. 2 demonstrates an example of a simulated spectroscopic
template, degraded by the three different noise cases.

C. Simulation Results

In this Section, we evaluate the performance of the proposed
denoising coupled dictionary learning scheme under various
noise scenarios, each one corresponding to a different SNR
level, namely, the low, medium, and high SNR. Proper nor-
malization of the input data is essential in order to achieve a
valid reconstruction. Hence, to distribute the spectral profiles
evenly and scale them into an acceptable range, we normalized
the input spectral profiles by mapping them into the predefined
range of [−1, 1].

During the dictionary training phase, three pairs of noisy
and clean dictionaries were prepared, one for each SNR
value. For all three cases, we utilized 10.000 training spectral
templates, and we have experimented with different number of

representative dictionary atoms. Specifically, we examined the
impact of using 4000, 6000, and 8000 dictionary atoms. The
best performance is achieved in the case of 8000 dictionary
atoms. In order to quantify the proposed algorithm’s perfor-
mance, we investigate the empirical convergence behaviour of
the Augmented Lagrangian function L. Figure 3 depicts the
normalized reconstruction error for the Augmented Lagrangian
function as a function of the iterations number.

Fig. 3: Convergence Behaviour of the proposed Dictionary Learning
Algorithm: Convergence of the Augmented Lagrangian function.

In run-time, we applied our coupled dictionary learning
denoising scheme in 3000 spectral profiles. In order to evaluate
the reconstruction quality, we measure the normalized root
mean square error (NRMSE), between the reconstructed and
the original spectral profiles. The normalized root mean square
error between an original signal y and its reconstruction ŷ is
defined as: NRMSE =

√
‖y−ŷ‖22
‖y‖22

.
In terms of a quantitative comparison, we averaged the

NRMSE reconstruction errors along all 3000 testing spectral
templates, subject to their corresponding original spectral
profiles, and for all three different noise scenarios. Table I
highlights the proposed system’s performance, when different
number of dictionary learning atoms are used. The best
obtained averaged reconstruction errors are 0.0026, 0.0069,
and 0.0091 for the high, medium, and low SNR noise
levels, respectively. In all cases, one may observe that the
size of the reconstruction error indicates a valid recovery
of the noisy signals. Fig. 4 demonstrates an example of the
proposed system’s reconstruction, when applied on the three
different noise scenarios. We observe, that in all three cases,
the reconstructed denoised signals preserve all the significant
peaks with respect to their corresponding “clean” spectral
profiles. Additionally, the resulting denoised reconstructions
preserve accurate similarity with the ground truth templates,
even in the challenging low-SNR noisy case.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 531



(a) Low SNR (b) Medium SNR (c) High SNR

(d) Reconstruction from Low SNR (e) Reconstruction from Medium SNR (f) Reconstruction from High SNR
Fig. 4: Reconstructed Spectral Profile under the three noise scenarios: (Left) Reconstructed Spectral Profile under low SNR conditions,
(Middle) Recovered Spectral Template from medium SNR noise scenario, (Right) Reconstructed Spectra from high SNR conditions. The
number of selected dictionary atoms was set to 8000. In all three cases, the recovered templates preserve accurate similarity with the ground
truth and clean spectral templates.

TABLE I: Quantitative evaluation of the proposed denoising scheme
versus the different number of dictionary atoms in terms of NRMSE

Dictionary Atoms 4000 6000 8000
Low SNR 0.0106 0.0099 0.0091
Medium SNR 0.0079 0.0077 0.0069
High SNR 0.0033 0.0028 0.0026

D. Conclusions

In this paper, we developed a novel technique that tackles
the spectroscopic data denoising problem applied on Euclid’s
simulated spectra templates. The reported experimental results
suggest that Sparse Representations and Coupled Dictionary
Learning are powerful tools, able to reconstruct denoised
spectral profiles from their corresponding low-resolution, and
noisy versions. Additionally, we observed that the proposed
denoising algorithm works successfully even with extreme
noise scenarios. The developed coupled dictionary learning
scheme can be efficiently used in other types of astronomical
and spectral signal applications, such as deblurring and super-
resolution [14].
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