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Abstract—We consider the problem of covariance estimation
with projected or missing data, and in particular the application
to spatial channel covariance estimation in a multi-user Massive
MIMO wireless communication system with arbitrary (possi-
bly time-varying and/or non-orthogonal) pilot sequences. We
introduce batch and online estimators based on the expectation-
maximization (EM) approach, and provide sufficient conditions
for their asymptotic (for large sample sizes) unbiasedness. We
analyze their application to both uplink and downlink Massive
MIMO, and provide numerical performance benchmarks.

I. INTRODUCTION

Channel state information (CSI) acquisition represents an
important problem in the multi-user Massive MIMO (Multiple-
Input Multiple-Output) scenario [1], where accurate CSI is
required in order to obtain the large multiplexing gain expected
from massive MIMO systems and achieve the rates shown
e.g. in [2]. In this context, the channels typically exhibit a
large degree of spatial (across the antennas) correlation [3].
A number of recent works on Massive MIMO have made
use of the assumption that the spatial correlation of the
wireless channel state process (sometimes called statistical
CSI, or channel distribution information, CDI) is available to
the device in charge of the baseband signal processing. The
assumed channel models are generally such that statistical
CSI can be identified to the second-order statistics, through
a spatial covariance matrix associated to each channel state
process. In particular, an abundant literature is dedicated to the
topic of reducing the amount of reference symbols dedicated
to the estimation of instantaneous CSI in multi-user systems,
for which a variety of approaches have been proposed [4]–
[11]; all these techniques have in common the idea that the
prior information contained in the statistics can substantially
reduce the amount of reference symbols dedicated to CSI
estimation, by allowing either a denser reuse of identical
pilot sequences, or the use of non-orthogonal pilot sequences
without sacrificing estimation accuracy.

Most of these works however, do not cover the topic
of how the required statistical CSI is obtained. Although a
vast statistical literature on covariance estimation is available,
focusing among others on large dimensional analysis [12],
many of the existing approaches do not directly apply to

the problem at hand if one takes into account the dynamic
user scheduling and pilot sequence allocation (see [4]–[11])
resulting from evolving channel statistics.

Furthermore, since the role of statistical CSI is to mitigate
or remove the effect of pilot contamination, the available
statistical CSI itself should not be contaminated. One possible
solution to this issue is to have dedicated pilots for covariance
estimation, which can be less frequent but require a lower
reuse factor to reduce or suppress pilot contamination; note
however that this is not the only possible approach [13], [14].

In this article, we argue that statistical CSI acquisition
in Massive MIMO should be formulated as a problem of
covariance estimation with missing data (see e.g. [15]). This
particular point of view has been adopted in the context of
subspace estimaton and/or tracking [16], [17]. We propose in
the following practical maximum likelihood (ML) approaches
based on the expectation-maximization (EM) algorithm. This
approach has the advantage of 1) gracefully handling the
case of scheduling and dynamic pilot sequence allocation,
and 2) providing asymptotically contamination-free covariance
estimates without requiring dedicated pilot sequences.

The article is organized as follows. In Section II, we intro-
duce the channel model; Section III introduces the proposed
EM-based approach, discusses its asymptotic properties, and
introduces special cases as well as an online version of the
estimator. The application of these results to the context
of multi-user Massive MIMO is discussed in Section IV.
Section V introduces numerical simulation results.

II. PROBLEM STATEMENT

We address the covariance estimation of a multivariate zero-
mean circular Gaussian random vector h ∈ CN . We suppose
that we observe T noisy projections of independent identically
distributed samples h1, . . . ,hT :

yt = PH
t ht + nt (1)

where yt ∈ CLt is the observed random vector at time t, Lt
represents the dimension of the projection at time t (where
typically Lt < N ), Pt ∈ CN×Lt contains the projection
directions and nt ∈ CLt representing the noise is modeled
by a zero-mean Gaussian random vector of known covariance
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equal to σ2I. Let R denote the covariance of the random vector
h. Then, for each t = 1, . . . , T ,

yt = PH
t ht + nt ∼ CN (0,PH

t RPt + σ2ILt
).

We will denote in the following Σt(R) = PH
t RPt+σ

2ILt
. In

the context of the considered application to wireless commu-
nications, h will represent the channel state and Pt the pilot
sequence of length Lt used during the fading interval indexed
by t.

By independence of the realizations y1, . . . ,yT , the maxi-
mum likelihood estimator of R is

R̂T = arg min
R�0
R∈S

LT (R) (2)

where S is a linear subspace of CN×N and LT is proportional
to the negative log-likelihood of y1, . . . ,yT . S can be used
to impose a structure on R̂T , e.g. to incorporate prior model
information about the independence of certain coefficients in
h. Since the density of each circular Gaussian random vector
yt is given by ft(yt) = 1

πN det(Σt(R))
e−yH

t Σt(R)−1yt , we
consider LT as

LT (R) =
T∑
t=1

log det (Σt(R)) + yHt Σt(R)−1yt.

We now introduce approaches to solve (2).

III. ML COVARIANCE ESTIMATOR BASED ON
EXPECTATION MAXIMIZATION

A direct minimization of LT thanks to gradient descent
techniques has been proposed in the context of missing data
and factor analysis; see e.g. [15]. However, this approach
requires the use of second-order derivatives of the likelihood
which may be intractable for large N . A way to compute a
local minimum of the negative log-likelihood is to consider
the EM algorithm [18]. Indeed, we are in the situation where
we observe only a part yt of the total sample (hTt ,n

T
t )T .

The EM algorithm allows then to compute the maximum
likelihood of such partial observations (see [19] which uses
an EM algorithm in the context of missing observations).

The EM algorithm is an iterative scheme whereby at each
iteration, the covariance estimate R(n) is updated into R(n+1)

as follows:

E-step

The E-step consists in computing the expectation of the
negative log-likelihood of the total sample h1, . . . ,hT (we
omit the noise terms n1, . . . ,nT since their distribution do
not depend on R), namely

Lh(R) = T log det (R) +
T∑
t=1

hHt R−1ht (3)

with respect to the unobserved part of the data sam-
ple only (note that if R is rank-deficient, the inver-
sion and the log det operator may be adapted by con-
sidering the restriction to the range of R). In other

terms, we compute E[Lh(R)|yt,R(n)] = T log det (R) +∑T
t=1 E[hHt R−1ht|yt,R(n)] where E[·|yt,R(n)] denotes

the expectation conditioned on the observation yt ∼
CN (0,Σ(R(n))).

Since ht and yt are jointly Gaussian, the random vector
(hTt ,y

T
t )T is Gaussian with zero mean and covariance equal

to (
R(n) R(n)Pt

PH
t R(n) PH

t R(n)Pt + σ2I

)
.

Therefore, the random vector (ht|yt,R(n)) is also Gaus-
sian with mean µt = R(n)PtΣt(R

(n))−1yt and covariance
Ct = R(n) − R(n)PtΣt(R

(n))−1PH
t R(n). Then, it holds

E[hHt R−1ht|yt,R(n)] = Tr[R−1(R(n) + ∆
(n)
t )] where{

∆
(n)
t = M

(n)
t (yty

H
t −Σt(R

(n)))(M
(n)
t )H

M
(n)
t = R(n)PH

t Σt(R
(n))−1.

(4)

M-step

The M-step consists in minimizing the conditional expecta-
tion computed for the E-step (thus maximizing the conditional
expectation of the likelihood) with respect to the parameter R
i.e.

R(n+1) = arg min
R�0
R∈S

log det (R) + Tr

[
R−1

(
R(n) +

1

T

T∑
t=1

∆
(n)
t

)]
.

(5)

If the matrix
(
TR(n) +

∑T
t=1 ∆

(n)
t

)
is not positive definite,

the minimum is undefined because the minimized function is
unbounded. We will therefore give an approximation of the
M-step by letting (.)+ denote the projection operator on the
space of definite positive matrices, and Π denote the projection
onto the subspace S and define

R(n+1) =

(
Π

(
R(n) +

1

T

T∑
t=1

∆
(n)
t

))
+

. (6)

A. Accelerated EM

Since EM algorithm is a first-order scheme, its convergence
towards a local minimum may be slow. Then, we used an off-
the-shelf scheme presented in [20] named squared iterative
method (SQUAREM) in order to accelerate the convergence.
The idea is to compute two iterations of the EM algorithm
and to apply a Cauchy-Barzilai-Borwein method to compute
the next iterate (see Algorithm 1 where the function EM update
refers to eq. (6)).

B. Asymptotic properties of the EM estimator

The asymptotic properties of the maximum likelihood es-
timate R̂T are related to standard asymptotic properties for
independent non identically distributed random variables; see
[21]. Let us give the following theorem which states that
the proposed EM algorithm is asymptotically unbiased if the
projections are chosen appropriately (a sketch of the proof is
provided in Appendix A)
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Algorithm 1 Accelerated EM.
while convergence is not achieved

R1 = EM update(R(n)) according to (6).
R2 = EM update(R1).
L = R1 −R(n).
L2 = R2 −R1 − L.
` = − ‖L‖F‖L2‖F .
while likelihood has not increased

R(n+1) = (Π(R(n) − 2`L + `2L2))+.
`← `−1

2 .
end

end

Theorem 1. Suppose σ2 > 0 and that there exists
Pmin, Pmax > 0 such that P 2

minILt
� PH

t Pt � P 2
maxILt

for
all t. Suppose moreover that lim infT→∞

1
T

∑T
t=1 ‖PH

t x‖4 >
0 holds for any x 6= 0. Then,

R̂T −−−−→
T→∞

R a.s.

Remark that this result shows that a incorporating sufficient
randomness in the choice of Pt is sufficient to achieve
consistent covariance estimation.

C. Online version of EM

Since N may be large, each iteration of the EM algorithm
may be costly. Moreover, received signals yt may be consid-
ered as a process. For these reasons, an online version of the
EM algorithm is of interest in order to track the covariance.
Some online versions of EM have been proposed, e.g. an
algorithm based on a stochastic version of EM using the
knowledge of Fisher information matrix (see [22]). In this
section, we present an online version following [23], for its
simple derivation in our setup. Indeed, the idea is to replace
the expectation step by an approximation of the likelihood
conditional expectation L̂t+1(R) = (1 − γt+1)L̂t(R) +
γt+1E[Lht+1

(ht+1; R)|yt+1,Rt] where Lht+1
is the negative

log-likelihood of ht+1 (see eq. (3)). Therefore, if we define
step parameters (γt)t=1...T , each iteration results in{

St+1 = (1− γt+1)St + γt+1(Rt + ∆t+1(yt+1,Rt))
Rt+1 = (Π(St+1))+

(7)
with{

∆t+1(yt+1,Rt) = Mt(yt+1y
H
t+1 −Σt(Rt))M

H
t

Mt = RtP
H
t Σt(Rt)

−1.
(8)

This algorithm converges to a local minimum under mild
assumptions (see [23]). In particular, the convergence proof
requires that

∑
γt = ∞ and

∑
γ2t < ∞, as is the case for

most stochastic gradient descent. However, in practice, we do
not have access to infinitely many channel realizations sharing
the same covariance; we will therefore consider γt = γ,
which yields a tracking covariance estimator, which does not
converge asymptotically but rather behaves like a stochastic
process. In this case, the choice of γ directly impacts the
asymptotic variance of the process.

D. Special case of a fixed basis

We may assume that the projection directions are a subset
of a fixed basis of vectors. Let us denote by f1, . . . , fN a
basis of N orthogonal unit-norm vectors in CN . Then, for
each time slot t, the projections directions are drawn from a
permutation σt, i.e. Pt = (fσt(1), . . . , fσt(Lt)) (in the multi-
user MIMO scenario, σt would result from the scheduling
decision at instant t). Therefore, yt = ΠH

t FHht + nt, with
F = (f1, . . . , fN ) and Πt the subset of the permutation matrix
corresponding to σt. For the sake of notational simplicity, we
assume in this section that S = CN×N .

1) Full observation (i.e. orthogonal) case: The full ob-
servation case corresponds to the case where Πt = I for
all t. The ML estimate is then given in closed form by
R̂T = F

(
1
T

∑T
t=1 yty

H
t − σ2I

)
+

FH .
Proof: Let us denote λ1 ≤ · · · ≤ λN the eigenvalues of

1
T

∑T
t=1 yty

H
t and U its corresponding eigenvector matrix.

Similarly, denote µ1 ≤ · · · ≤ µN the eigenvalues of R +
σ2IN and V its corresponding eigenvectors. Then, since F is
a unitary matrix, it holds after some calculus

FHR̂F + σ2IN = arg min
µi≥σ2

VVH=In

N∑
i=1

log(µi)

+Tr
[
Vdiag(µi)

−1
i=1...NVHUdiag(λi)i=1...NUH

]
.

Let us denote A = UHV. Therefore A is a unitary matrix and
Tr
[
Vdiag(µi)

−1
i=1...NVHUdiag(λi)i=1...NUH

]
≥
∑N
i=1

λi

µi
.

Therefore, the minimum is obtained for V = U and
µi satisfying arg minµi≥σ2

∑N
i=1 log(µi) + λi

µi
, i.e. µi =

max(σ2, λi) which ends the proof.
2) Partial observation (i.e. non-orthogonal) case: In this

case, if F = IN , the ML is given by

R̂T = arg min
R�0

∑
t

log det(ΠH
t RΠt + σ2I)

+yt(Π
H
t RΠt + σ2I)−1yt.

This case corresponds to the case of covariance estimation
with missing data considered e.g. in [19].

IV. MASSIVE MIMO CHANNEL COVARIANCE ESTIMATION

In this section, the estimation framework introduced before
is applied to covariance estimation and tracking in the context
of pilot-aided CSI acquisition. Following the Massive MIMO
framework where the base station (BS) is equipped with
many antennas, we consider the estimation of BS-side channel
correlation, i.e. transmitter-side correlation in the downlink
case, and receiver-side correlation in the uplink case.

A. Downlink case

In the downlink CSI acquisition scenario, we consider
single-antenna users receiving a signal sent by a N -antennas
BS corresponding to a pilot matrix Pt of size N ×Lt at each
slot t = 1 . . . T ; covariance estimation can be performed by
each terminal in the system based on the received signal yt.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 660



In this context, S becomes equal to CN×N with the notations
of eq. (2), i.e. the projector Π becomes the identity mapping.

We may remark that the EM iteration may be rewrit-
ten as a function of the MMSE estimate of h. In-
deed, this MMSE estimate is expressed by ĥt(R) =
RPt(P

H
t RPt + σ2I)−1yt. Then, the EM iteration step may

be written as R(n+1) = (R(n) + ĥt(R
(n))ĥt(R

(n))H −
En[ĥt(R

(n))ĥt(R
(n))H ])+ where En denotes the expectation

with yt ∼ CN (0,Σt(R
(n))).

Note also that in the case of orthogonal pilots with reuse, a
fixed association between users and pilot sequences should be
avoided since it can lead to biased covariance estimates (in this
case, the hypotheses of Theorem 1 do not hold); however this
can be easily circumvented by incorporating some randomness
in the pilot allocation to make it evolve over time, e.g. through
a pseudo-random permutation.

B. Uplink case

Conversely to the downlink case, in the uplink the signal
received at a BS contains pilot signals coming from multiple
terminals, and it is necessary to consider the joint estimation of
the channel covariances of K users. Let us consider an uplink
CSI acquisition scenario where pilots are sent simultaneously
from all single-antenna terminals to the BS in order to estimate
the channel coefficients. Let pk,t ∈ CLt denote the pilot
sequence of length Lt symbols transmitted by terminal k. The
signal received at the BS, Yt = [y(1), . . . ,y(Lt)] ∈ CN×Lt ,
is obtained as

Yt = HtPt + Nt, (9)

where Ht = [h1,t, . . . ,hK,t] is the column concatenation of
the channel vectors from the K terminals to the N antennas
at the BS, Pt = [pT1,t; . . . ; p

T
K,t] ∈ CK×Lt is the matrix

containing the training sequences sent by the User Terminals
(UTs), and Nt ∈ CN×Lt represents additive noise.

Vectorizing (9) yields

yt := vec(Yt) = P̃H
t vec(Ht) + vec(Nt), (10)

where P̃t = (P∗t⊗IN ) and (.)∗ denotes the complex conjugate
operator. The vector ht := vec(Ht) is modelled as a Gaussian
random vector of covariance

R̃ =

 R1 0 0

0
. . . 0

0 0 RK


which corresponds to a structured model where the fading
processes are known to be independent across the users. With
the notations of eq. (2), the subspace S becomes the space
of such R̃ and the projector Π the linear operator setting the
off-diagonal blocks of size N×N to 0. Then, the EM iteration
step is given by

R(n+1) =

(
Π

(
R(n) +

1

T

T∑
t=1

∆
(n)
t

))
+

where ∆
(n)
t is given by eq. (8).

V. NUMERICAL RESULTS

We have compared the different estimators acording to the
following scenario. We consider a covariance R drawn from a
Wishart distribution with r degrees of freedom, i.e. there exists
a matrix X ∈ CN×r with independent zero-mean circular
Gaussian entries of variance 1 such that R = XXH . The
per-user pilot sequences (columns of Pt) are independently
drawn from a Haar distribution on the space of unit-norm
vectors. Furthermore, let us assume that the dimension of Pt

is independent of t, i.e. Lt = L. Finally, we assume that
σ2 = 10−2 which corresponds to a Signal-to-Noise ratio
equal to 20dB. With these parameters, we have compared
different estimators: 1) the sample covariance estimator (SCM)
assuming full observations of channel realizations (which is
therefore a lower bound in terms of estimation error), i.e.
R̂T = 1

T

∑T
t=1 hth

H
t , 2) the batch EM estimator (Algo-

rithm 1), 3) the tracking EM estimator (7)–(8) with different
values of the tracking parameter γ = 0.1 and γ = 0.01,
where we chose as criterion of comparison between R and its
estimate R̂T the estimation error measured by ‖R−R̂T ‖F

‖R‖
1
2 ‖R̂T ‖

1
2
F

.

In Figs. 1 and 2, we represent these estimation errors with
respect to the number of samples T . We average the estimation
error among NMC = 10 Monte Carlo runs. We may observe
that the EM estimator is already close to the SCM as soon as
the pilot length L is large enough. The “convergence” of the
two tracking estimators is obviously slower than for the batch
estimators and do not decrease below a floor corresponding to
the asymptotic variance of the tracking process. However, we
may remark that the lower the tracking step γ, the lower the
asymptotic variance.

0 200 400 600 800 1,000

10−1

100

101

Number of samples (T)

E
st

im
at

io
n

er
ro

r

SCM
EM
tracking EM (γ=0.1)
tracking EM (γ=0.01)

Fig. 1. Estimation error with respect to the number of samples (L = 10, r =
10, N = 64).

VI. CONCLUSION

We have discussed the application of covariance estimation
with projected or missing data to the problem of spatial
channel covariance estimation in a multi-user Massive MIMO
wireless communication system, including time-varying and/or
non-orthogonal pilot sequences, for both uplink and downlink
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Fig. 2. Estimation error with respect to the number of samples (L = 2, r =
10, N = 64).

cases. We introduced batch and online estimators based on
the expectation-maximization (EM) approach, and provided
sufficient conditions for their asymptotic unbiasedness.

APPENDIX A
PROOF OF THEOREM 1

Let us check the hypotheses of [21, Thm. 1] and verify that
the theorem applies. Since the result is given for real random
variables, we simply remark that

(
Re(z)T , Im(z)T

)T
is a zero

mean Gaussian with covariance 1
2

(
Re(R) −Im(R)
Im(R) Re(R)

)
.

Note that the negative log-likelihood function LT satisfies
1
T LT (S) ≥ log(P 2

minλmin(S)) for any S where λmin(S)
denotes the minimum eigenvalue of S. Then, for any C >
0, there exists B > 0 such that for T large enough,
if S � BIN , then 1

T LT (S) ≥ C. Moreover, it holds
1
T LT (IN ) ≤ log(P 2

max + σ2) +
P 2

max

σ2T

∑T
t=1 hHt ht + 1. Since

1
T

∑T
t=1 hHt ht → E[‖ht‖2] almost surely (a.s.), 1

T LT (IN )
is majored independently from T a.s. Therefore, since the
maximum likelihood R̂T minimizes LT , we can restrict the
parameter space for T large enough to Θ = {R s.t. R �
MI}. Assumptions (C1) and (C2) are then easily verified. Fur-
thermore, the likelihood function difference satisfies |Lt(S)−
Lt(R)| ≤ 2 log(MP 2

max + σ2) + 2P 2
maxσ

−2hHt ht + 2 which
implies (C3’) and (C5).

Let us consider S 6= R and note h(A) := − log det(A) +
Tr(A) − N . Then the expected log-likelihood difference is
E[Lt(S)] − E[Lt(R)] = h(At), with At = Σt(R)Σt(S)−1.
Remark that h is a convex function attaining its maximum
in I with an Hessian matrix equal to the information matrix.
On the other hand, let g : A 7→ ‖A − I‖2, it holds
At � Pmax

σ2 R + I, i.e. At belongs to a compact and for
any At in this compact, ∇2h(At) = A−1t ⊗ A−Tt with
M1 = σ2

σ2+Pmaxλmax(R) . Since g(I) = 0 and ∇g(I) = 0, we
can integrate the inequality, i.e. for any At in this compact
1
T

∑T
t=1 h(At) ≥

∑N
i=1 λ

2
iM2

(
1
T

∑T
t=1 ‖PH

t xi‖4
)

> 0

with λi and xi the eigenvalues and eigenvectors of R − S

respectively and M2 = M1

σ2+Pmaxλmax(S) which ensures that
(C4’) is also verified.
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