
Parametrisable Digital Design of a Sphere Decoder
with High-Level Synthesis

Benjamin Knoop1, Liam Schwez, Dagmar Peters-Drolshagen1, Steffen Paul1
1 Institute of Electrodynamics and Microelectronics (ITEM), University of Bremen, Germany

Email: {knoop, peters, steffen.paul}@me.uni-bremen.de

Abstract—A Sphere Decoder is a popular tree search algorithm
for the solution of integer least squares minimisation problems. It
has gained considerable attention for its application to maximum
likelihood detection of digitally modulated signals in MIMO
communication systems and can almost universally be applied
to a plethora of problems with some modifications to the sphere
constraint. This creates the need for a baseline digital hardware
design of a configurable Sphere Decoder, which can be adjusted
for various applications. This paper presents the implementation
of a baseline Sphere Decoder with high-level synthesis (HLS) in
connection with a data type-agnostic programming methodology,
which makes it even more flexible.

I. INTRODUCTION

A sphere decoder is a popular tree search algorithm for the
solution of integer least squares (ILS) minimisation problems.
Usually these problems can be written as

x̂ = arg min
x∈ZN

‖y −Hx‖22 , (1)

with y ∈ RM , H ∈ RM×N and x being constrained to be a
vector of integers [1], [2]. The minimising solution x̂ is the
closest multi-dimensional lattice point to the vector y in a
Euclidean `2-norm sense. However, this problem is known to
be NP-hard, i.e. of non-polynomial algorithmic complexity or,
in other words, infeasible to compute except for a very small
problem size N .

Even so, oftentimes the relationship between y and H is
not arbitrary but known, at least statistically. Most communi-
cation applications can be modelled by a linear input-output
relationship

y = Hx+ n . (2)

In this context, H denotes the channel matrix, which is
generally known at an receiver with channel state information
up to some estimation uncertainty. And y is here the noisy
observation vector, perturbed by additive white Gaussian noise
(AWGN) n ∼ N (0, σnI) with I being the identity matrix.
With known statistical properties like these, Hassibi and Vikalo
showed that solutions to the ILS problem (1) can be obtained
on average in polynomial time by sphere decoding although
the worst-case complexity might still be exponential [1].
Nonetheless, this renders sphere decoding tractable for many
communication problems.

Therefore, sphere decoding has gained considerable atten-
tion for its application to maximum likelihood detection of
digitally modulated signals. This fact introduces a further
reduction in complexity because the solution space is usually

not an infinite N -dimensional lattice but solely a subset
AN ⊂ ZN of it. A denotes the finite set of constellation points
of a digital modulation scheme, e.g. Binary Phase-Shift Keying
(BPSK) with ABPSK = {−1, 1}. The optimisation problem can
be reformulated for complex-valued symbols without much
effort.

Compared to maximum likelihood (ML) detection, i.e. an
exhaustive search in general, SD can still feature the optimality
of ML estimation results. It sets therefore a benchmark for
other heuristic or approximative methods and it has seen
a wide range of applications, e.g. in spatial-multiplexing
multiple-input multiple-output (MIMO) communication sys-
tems [3], [4] or in sporadically transmitting wireless sensor
networks [5], just to mention two of them. Each scenario poses
different constraints and various tweaks of the cost function
in (1) have been proposed in the literature. Nevertheless, the
sphere decoding principle is common to all parametrisations.

Hence, a configurable and parametrisable hardware design
of a SD would be favourable (“one size fits most”). We present
therefore in this paper a baseline digital architecture, which is
configurable with regard to (i) application-specific parameters,
that is, e.g., the problem size or the modulation alphabet,
(ii) algorithmic variations, e.g. different sphere constraints or
candidate enumerations, and (iii) implementation aspects, like
norm approximations or used fixed point datatypes, and so on.

This high degree of flexibility can only be achieved because
of the employment of a high-level synthesis (HLS) tool.
A rapid datatype-agnostic design methodology is applied to
create the SD hardware architecture on an elevated design
perspective, capturing the essential sphere decoding principle
while abstracting certain implementation specifics [6]. This
still leads to fair results in terms of hardware performance
and resource utilisation, while gaining the enormous flexibility
with regard to parametrisation as outlined above.

II. PARAMETERS TO SPHERE DECODING

Sphere Decoding belongs to the class of tree search algo-
rithms. It performs the search exclusively on a partial set of
possible symbol vectors representing a subtree, which induces
its efficiency. The problem must first be transformed into a
search tree by triangularisation of the ILS problem (1) using
matrix QR factorisation [2]. The matrix H with M ≥ N is
factorised such that H = QR with R being quadratic N ×N
and Q having the dimensions M ×N . This is also called the
skinny QR decomposition.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1389

Then, (1) can be reformulated as

x̂ = arg min
x∈SN

‖ỹ −Rx‖22 , (3)

with ỹ = QTy. Note that the minimisation is now with respect
to the set S, which is usually equal to Z, the real-valued
integer numbers, but can as well denote complex integers
Z[i] = {a + jb | a, b ∈ Z}, also called Gaussian integers.
The latter (or any complex) case can easily be reduced to a
real-valued problem of size 2N by the application of a real-
valued decomposition (RVD), either block-wise (BRVD) or
element-wise (ERVD) [7].

Additionally, S can denote any finite alphabet signal con-
stellation as they are used for digital modulation in commu-
nications, like Quadrature Amplitude Modulation (QAM) or
Phase-Shift Keying (PSK) as long as bits are independently
mapped to the real and imaginary parts of the symbols. This
problem occurs, e.g., in spatial-multiplexing MIMO communi-
cation systems with M receive and N transmit antennas. The
SD algorithm complexity naturally depends on the size of the
modulation alphabet S linearly.

The optimisation problem (3) is a maximum likelihood
sequence estimation (MLSE) because no further assumptions
are made about the statistics of the modulation symbols.
Implicitly this means that the transmit symbols of the sequence
(xi) with i = 1, ..., N are independent and identically uni-
formly distributed. However, for some application scenarios
a maximum a posteriori (MAP) detection is favourable when
a priori information is available and can be taken into account.
In wireless sensor networks with sparse transmission patterns,
e.g., inactive sensor nodes can be modelled to transmit a zero
symbol with greater probability than a data symbol [5]. In
such a case, the ML cost function fML(x) = ‖ỹ −Rx‖22 is
augmented by a second MAP regularisation term fMAP(x) (see
Sec. IV-B) such that

f(x) = fML(x) + fMAP(x) . (4)

Now, SD restricts its search to such hypotheses x which lie
within in a (regularised) hypersphere with radius ρ, i.e.

f(x) < ρ , (5)

which is the sphere constraint (SC). A hypothesis is every
possible realisation of x in SN , i.e. there are |S|N possible
solutions or hypotheses. To determine whether or not a specific
x∗ fulfills (5) is itself NP-hard [1].

Yet, the triangularised optimisation problem in (3) allows to
compute the optimum iteratively over a hierarchical structure
that can be visualised as a search tree with N + 1 layers, |S|
branches from each non-leaf node and with |S|N leaf nodes
in total [4]. The squared `2-vector norm describes the distance
between x and ỹ and consists therefore of N partial distances
(PD) dn(xn, ỹn),

f(x) =
N∑

n=1

dn(xn, ỹn) =
N∑

n=1

∣∣∣∣∣ỹn −
N∑

`=n

rn`x`

∣∣∣∣∣
2

, (6)

and dn ≥ 0 ∀n holds. Due to the upper-triangular structure of
R, the PDs only depend on symbol hypotheses x` of higher
layers ` > n. Sphere decoding starts at the N -th layer and
evaluates the PD of a hypothetical x∗N (up to |S| possibilities).
If dN violates the SC (5), all hypotheses x with xN = x∗N will
do so as well. These vectors can be excluded from the search
tree, which is called tree pruning. Next, the sphere decoder
proceeds and descends within the search tree to the level N−1
and tests the partial accumulated metric (PAD) dN−1 + dN ,
also called partial Euclidean distance, against the SC. If no
hypothesis remains to fulfil the SC, it jumps back up to the last
valid one. In general, the PAD is computed as DN

k =
∑N

n=k dn
with k ≤ N and because of the non-negativity of the PDs it
is DN

N ≤ DN
N−1 ≤ · · · ≤ DN

1 = f(x) < ρ. That is the core
idea of SD.

It is important to highlight that there are two possible
search strategies. Since the algorithmic complexity of SD
is measured by the number of visited, or processed, tree
nodes one or the other enumeration scheme is better suited
depending on the specific application setup. SD can perform
a “depth first” search following the Fincke-Pohst enumeration
of possible candidates, i.e. the hypothesis with the smallest
value is evaluated first. Or alternatively and according to the
Schnorr-Euchner enumeration, a “best first” search starts with
evaluating the PDs of all child nodes and proceeds with the
closest candidate with the minimal PD [3]. If S is a small
set of discrete values, an exhaustive search with consecutive
sorting is feasible. Then, the algorithm maintains a list with
PD values of symbol candidates of a size up to |S| on each
level. The list must be sorted in ascending order, whereby the
implemented sorting procedure also affects the computational
complexity of the SD algorithm.

Furthermore, the number of processed nodes heavily de-
pends on the SC update strategy. There are basically two al-
ternatives as well. First, the SC can be initialised with a certain
value, e.g. with the zero-forcing solution x̂ZF = [H+y]S which
is the solution of the relaxed optimisation problem (3) without
integer or finite alphabet constraint. (·)+ denotes the Moore-
Penrose pseudoinverse and [·]S quantisation with respect to
the discrete set S, i.e. the continuous solution is consecutively
quantised to the closest lattice point [1]. Second, the SC can
be set to infinity (ρ←∞) for best first decoding and updated
every time a better leaf node is found. This guarantees that
the search sphere contains a valid integer solution and the
decoding complexity is thereafter reduced by the repeated
shrinking of the SC.

Burg et al. have shown that SD can also be implemented
with non-Euclidean simplified norms [3]. Substituting the
`2 norm in (3) for other `p vector norms such as `1 or
`∞ effectively reduces the computational complexity of the
algorithm by avoiding the squaring multiplications. Especially
it is

‖x‖1 =
N∑

n=1

|xn| . (7)

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1390

Algorithmic Specification

Implementation in C++ for HLS

HLS Compiler

RTL Design

FPGA Bitstream

Figure 1. High-level synthesis design flow for FPGAs.

This, of course, trades a simplified hardware for a somewhat
decreased detection error rate performance.

III. THE ADVANTAGES OF HIGH-LEVEL SYNTHESIS WITH
DATATYPE-AGNOSTICIM

High-Level Synthesis (HLS) accelerates digital hardware
design because it elevates the hardware engineer’s design
perspective away from the Register-Transfer Level (RTL). It
synthesises specialised hardware from high-level specifications
written in a software programming language, commonly C++
or SystemC, which also provide object-oriented and generic
programming features. Recent studies show that the C++-to-
RTL flow can produce results with a quality close to tradi-
tional development methodologies with hardware description
languages (HDL) [8]. Fig. 1 highlights the HLS design flow
targeting a Field-Programmable Gate Array (FPGA). Though
not being restricted to FPGA designs, HLS is very well-
suited for FPGAs because they feature fast design cycles for
rapid prototyping purposes. The HLS compiler requires two
inputs, the source code of the algorithm and a set of compiler
directives to influence the architecture of the RTL design, e.g.
to exploit parallelisms, and generates an RTL description in
an HDL such as VHDL or Verilog.

Since there is no operating system to manage memory
resources on the target device, the source code may not contain
any dynamic memory allocations and must resort to static
memory allocations at compile time only. Nonetheless, HLS
designs inherit the potential flexibility the C/C++ language
has to offer, foremost the class and template system. This
enables the application of the datatype-agnostic programming
methodology for HLS [6]. Datatype agnosticism means that
the source code only makes use of custom datatype definitions,
which can easily be exchanged. The code itself is agnostic
to whether it will be compiled for floating point, fixed point
or complex-valued datatypes, e.g. based on the C++ standard
library std::complex. Standard C data types support vari-
ables with 8, 16, 32, etc. bit boundaries. SystemC’s fixed point
class sc_fixed moreover allows variables to be defined for
any arbitrary precision bitwidth, e.g. 6, 12 or 18 bits, and by
this to exercise a better control of FPGA resources. A fixed
point variable is characterised by the number of digits before
and after the position of the binary point. A common notation

Table I
SPHERE DECODING PARAMETERS FOR TWO EXAMPLE SCENARIOS

Parameter Symbol Scenario A Scenario B

Problem Size (M,N) (4, 4) (16, 16), (32, 20)
Search Space S A16-QAM ABPSK ∪ {0}
Cost Function f(x) ML, Eq. (8) MAP, Eq. (9)
SC Update ρ←∞ yes yes
Search Strategy — best first best first
Norm Approximation `p `2 `1, `2
Datatype Agnosticism — yes, Tab. II yes, Tab. III
Complexity — C, ERVD R

is the Q-format written as Q(m.n), where m is the number
of integer bits including the two’s complement sign bit and n
the number of fractional bits.

The efficacy of the datatype-agnostic methodology becomes
obvious during the top-down implementation flow of an
algorithm, here the SD. Usually algorithms are developed
and verified with double floating point accuracy. If complex-
valued, an RVD has to be applied at some time, and to obtain a
slim and fast hardware design additionally a transition to fixed
point operation is necessary. Especially these modifications
require deep hardware expertise but that can significantly be
alleviated by the datatype-agnostic design methodology.

Further configuration flexibility can be harvested from the
fact that the C code can be fully parametrised by custom-
defined constants or pre-processor macros. This goes beyond
the possibilities HDL generics offer. For the SD, each pa-
rameter discussed in the previous section or listed in Tab. I is
mapped to such a constant or macro. This makes it extensively
parametrisable at compile time. E.g., the problem size, written
as a value pair (M,N), can be given as two constants, the op-
timisation objective function f(x), Eq. (4), can be configured
to match the application based upon a macro definition, and
so on.

The employed HLS compiler is Xilinx Vivado HLS. The
SD algorithm was coded in C++ while oberserving the HLS
coding guidelines and verified against a valid Mathworks
Matlab model [9]. All SD parameters were defined as C pre-
processor macros in a separate header file. The application of
directives is not scope of this work. However, this work can
be tuned by the later addition of these to meet application-
specific timing requirements. The datatype-agnostic method-
ology was adopted and a macro DATATYPE was defined
to switch between different C++ typedef specifications.
This includes single-precision floating point and Vivado’s
fixed point data type ap_fixed, which is derived from and
very similiar to SystemC’s sc_fixed. For all real-valued
datatypes T there is a corresponding complex-valued definition
std::complex<T>.

IV. EXAMPLE APPLICATIONS AND RESULTS

We define two communication application scenarios to
which SD has been applied to in the literature. This will
demonstrate the flexibility of the proposed parametrisable SD
hardware design. Scenario A is a classical MIMO system and

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1391

Table II
IMPLEMENTATION RESULTS FOR SCENARIO A

Datatype Time Resource Utilisation

T K µs BRAM DSP FF LUT

float C 0,634 12 45 5815 11430
ap_fixed C 0,848 8 29 3438 6961

float R 0,591 8 8 2346 3815
ap_fixed R 0,514 5 12 1412 1757

Scenario B is an uplink of a machine-type communications
wireless sensor network. The parametrisations of the SD and
variations of them are summarised in Tab. I. Details and results
will be explained in the following.

Synthesis was carried out for a Xilinx Zynq-7
(xc7z020clg484-1) as hardware target device at
fclk = 100MHz clock frequency, i.e. operations are re-
scheduled by HLS until the critical path matches this timing
requirement.

A. MIMO Communications

Scenario A is a classical MIMO communications system
with multiple anntennas. There are N = 4 transmit and M = 4
receive antennas. The influence of the wireless transmission
channel is modelled as frequency non-selective and non-line-
of-sight, i.e. the fading coefficients hmn of the channel matrix
H are Rayleigh-distributed. H is known at the receiver, i.e.
perfect channel estimation is assumed. Data bits are digitally
modulated with 16-QAM, S = A16-QAM. Hence, optimal ML
detection must be according to

x̂ = arg min
x∈(A16-QAM)N

‖ỹ −Rx‖22 , or (8a)

x̂′ = arg min
x′∈(A4-ASK)2N

‖ỹ′ −R′x′‖22 (8b)

for a real-value decomposed equivalent problem. The primed
entities are real of double size, e.g. x′ is a vector of length 2N
with elements taken from the real-valued 4-Amplitude Shift
Keying (ASK), A4-ASK = {−3,−1, 1, 3}, whereby A16-QAM =
{a + jb | ∀a, b ∈ A4-ASK}. Since the QRD is applied after
RVD, R′ maintains its upper-triangular structure.

Table II lists the HLS synthesis results of the parametrised
SD. The design is optimised for minimal resource utilisation,
i.e. without parallelisations. Two variations of the ML MIMO
SD are listed: the complex-valued (Eq. 8a) and real-valued
with ERVD (Eq. 8b). The times given are the estimated
processing time of a node. This is lower for the RVD case,
but note that in fact an 8-by-8 system of equations has to be
solved which increases the total runtime superlinearly. Hence,
it is advantageous to process complex symbols though the
resource utilisation is slightly more than twice the utilisation
count of the RVD setup. Fig. 2 plots the bit error rate (BER)
performance of the SD over the signal-to-noise ratio (SNR)
and proves that the problems in (8) are indeed equivalent.
This holds true for the implementation as well. The baseline
fixed point configuration was Q(10.8). This choice will be
explained in further detail below.

0 5 10 15 20

10−4

10−2

Eb/N0 in dB

B
it

E
rr

or
R

at
e

SD complex
SD ERVD

Figure 2. BER vs. SNR (Eb/N0 in dB) for 4×4 MIMO-system

Table III
IMPLEMENTATION RESULTS FOR SCENARIO B

Datatype Setup Time Resource Utilisation

C (M,N) `p µs BRAM DSP FF LUT

float (16, 16) `2 1.634 6 48 1941 5136
ap_fixed (16, 16) `2 0.754 5 31 1558 3567

float (16, 16) `1 0.982 6 23 1930 1219
ap_fixed (16, 16) `1 0.406 5 17 1497 2214

float (20, 32) `1 0.976 6 23 1948 4063
ap_fixed (20, 32) `1 0.417 5 17 1506 2343

B. Wireless Sensor Network with Sporadic Transmissions

The second examined toy problem follows the system
descriptions in [5], [10]. Machine-type communication is
often sporadic and of a low data rate. Precisely, we assume
a wireless sensor network where N sensor nodes transmit
data symbols to a central aggregation node (uplink) with a
certain activity probability pa only. To avoid activity signalling
overhead, simultaneous transmissions are allowed and channel
access is uncoordinated, however data symbols are spreaded
by a node-specific code, similar to a Code-Division Multiple
Access (CDMA) system, to allow for user separation at the
receiver side. Random Bernoulli sequences (length M) are
used as spreading codes and the node-specific channel impulse
responses consist of four random Rayleigh fading coefficients.

The receiver has to jointly detect the activities and data sym-
bols of all users. The digital modulation alphabet is augmented
with a zero symbol to model inactivity: A0 = A∪{0}, i.e. here
ABPSK

0 = {−1, 0,+1}. Since activity occurs with pa = 0.2,
a priori information about the statistics of x is available and
a MAP optimisation problem can be derived as

x̂ = arg min
x∈AN

0

‖y −Hx‖22 + 2λσ2
n‖x‖0 , (9)

with λ = ln(1−pa

pa/|A|) being the ratio of the a priori probabilities
for inactivity and a certain symbol from the modulation
alphabet. σ2

n is the channel noise power and most importantly
‖x‖0 is the number of non-zero elements of x, often said to
be the `0-pseudo norm.

Table III lists synthesis results for three variations of this
parametrisation for SD. First, a system with N =M = 16 was

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1392

6 8 10 12 14 16 18
10−5

10−4

10−3

10−2

10−1

Eb/N0 in dB

Sy
m

bo
l

E
rr

or
R

at
e 3

14
4
5
6
7
8
9..13
float

16.6 16.8 17 17.2 17.4
10−4.5

10−4

Figure 3. Detection performance for a fixed-point wordlength of w = 18 bits
but varying number of fractional bits f .

investigated, i.e. the CDMA system is critically loaded. Due
to the sparse nature of the channel access a joint activity and
data detection is still possible. Second, (M,N) = (32, 20) was
chosen for an overdetermined system. Note, that the fixed point
design considerably reduces the number of utilised DSP slices
(dedicated mulipliers on the FPGA) while still maintaining
floating point detection performance. However, an increased
problem size only increases the run-time complexity of the
SD algorithm but not the per-node computational complexity.
Therefore the resource utilisation count is basically equal for
both cases.

The optimal Q fixed point format of w = 18 bits wordlength
was found by a parametric sweep. This wordlength best
matches the input wordlength of the DSP slices and leads to
an optimal utilisation-accuracy trade-off. The SD design was
tested for Q formats Q(w − f.f) with f being the number
of fractional bits. Fig. 3 shows the detection performance in
terms of symbol error rate over the SNR for a range f . As
it can be seen, for small fractional lengths (f = 3, ..., 8)
the detection performance is degraded due to insufficient
numerical precision (underflows). For f = 9, ..., 13 detection
performance nearly achieves floating point accuracy. But if
there are too few integer bits, overflows occur and detection
is severely deteriorated. Hence, Q(10.8) was chosen for the
overall design.

Furthermore, the influence of a complexity-reduced norm
was investigated. Fig. 4 compares the detection performance
of the SD metric given in (9) with a metric where the `2-norm
of the ML part is substituted for the simpler `1 norm in (7).
A moderate loss in SER performance of about 2 dB can yield
a 54 % faster and smaller (DSP slices) design as a trade-off
(see Tab. III).

0 5 10 15

10−5

10−3

10−1

Eb/N0 in dB

Sy
m

bo
l

E
rr

or
R

at
e

SD `1 float
SD `2 float

Figure 4. Influence of the norm computation with reduced-complexity on the
detection performance of an uncoded system.

V. CONCLUSION

A parametrisable hardware design of a Sphere Decoder was
presented. Fine-granular settings are possible for the problem
size, modulation alphabet, norm approximation, sphere radius
and search metric, datatypes etc. With further HLS directives
added to the design it could easily be adapted to meet stricter
timing constraints. The datatype-agnostic design methodology
allowed for the fast development of a fixed point design: the
fixed point Q format could be correctly scaled and verified
with an application-driven test solely based on a single base-
line definition. The presented results show that the proposed
parametrisable Sphere Decoder based on HLS is a versatile
design for a variety of applications.

ACKNOWLEDGMENT

This work was partially funded by the German Research
Foundation (DFG) under grant PA 438/8-1 and the German
Federal Ministry of Education and Research within the project
“HiFlecs” (Reference number: 16KIS0271).

REFERENCES

[1] B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm I. Ex-
pected complexity,” IEEE Transactions on Signal Processing, vol. 53,
no. 8, pp. 2806–2818, Aug. 2005.

[2] S. Qiao, “Integer least squares: Sphere decoding and the LLL algorithm,”
in Proceedings of the 2008 C3S2E Conference, 2008, pp. 23–28.

[3] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and
H. Bolcskei, “VLSI implementation of MIMO detection using the sphere
decoding algorithm,” IEEE Journal of Solid-State Circuits, vol. 40, no. 7,
pp. 1566–1577, Jul. 2005.

[4] E. G. Larsson, “Mimo detection methods: How they work,” IEEE signal
processing magazine, vol. 26, no. 3, pp. 91–95, May 2009.

[5] H. Zhu and G. B. Giannakis, “Exploiting sparse user activity in multiuser
detection,” IEEE Transactions on Communications, vol. 59, no. 2, pp.
454–465, Feb. 2011.

[6] B. Knoop, J. Rust, S. Schmale, D. Peters-Drolshagen, and S. Paul,
“Rapid digital architecture design of orthogonal matching pursuit,”
in Proceedings of the 24th European Signal Processing Conference
(EUSIPCO), Aug. 2016, pp. 1857–1861.

[7] T. Wiegand and S. Paul, “Reduced complexity computation unit for a
sphere decoding algorithm,” European Wireless 2012, VDE VERLAG
GMBH, Jun. 2012.

[8] H. Ren, “A brief introduction on contemporary high-level synthesis,” IC
Design & Technology (ICICDT), 2014 IEEE International Conference
on, May 2014.

[9] I. Xilinx, Vivado Design Suite User Guide. High-Level Synthesis. UG902
(v2016.4), Nov. 2016.

[10] F. Monsees, C. Bockelmann, D. Wubben, and A. Dekorsy, “Sparsity
aware multiuser detection for machine to machine communication,” in
2012 IEEE Globecom Workshops, Dec. 2012, pp. 1706–1711.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1393

