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Abstract—Dose calculation from MRI is a topical issue. New 

treatment systems combining a linear accelerator with a MRI 
have been recently being developed.  MRI has good soft tissue 
contrast without ionizing radiation exposure. However, unlike 
CT, MRI does not provide electron density information necessary 
for dose calculation. We propose in this paper a machine learning 
method to simulate a CT from a target MRI and co-registered 
CT-MRI training set. Ten prostate MR and CT images have been 
considered. Firstly, a reference image was randomly selected in 
the training set. A common space has been built thanks to affine 
registrations between the training set and the reference image. 
Multiscale image descriptors such as spatial information, 
gradients and texture features were extracted from MRI patches 
at different levels of a Gaussian pyramid and used as voxel-wise 
characteristics in the learning scheme. A Conditional Inference 
Random Forest (CIRF) modelled the relation between MRI 
descriptors and CT patches. For validation, test images were 
spatially normalized and the same descriptors were computed to 
generate a new pCT. Leave-one out experiments were performed. 
We obtained a MAE = 45.79 (pCT vs CT). Dose volume 
histograms inside PTV and organs at risk are in close agreement. 
The D98% was 0.45 % (inside PTV) and the 3D gamma pass rate 
(1mm, 1%) was 99,2%. Our method has better results than direct 
bulk assignment. And the results suggest that the method may be 
used for dose calculations in an MR based planning system. 

Keywords—Pseudo-CT; Radiotherapy; Magnetic Resonance 
Imaging; Treatment  planning;  Random Forest;  

I.  INTRODUCTION 

CT-scans are the main imaging modality in external beam 
radiotherapy. They allow the definition of tissue electron 
density necessary for dose calculation. Nevertheless, CT-scans 
use ionizing radiation and they have particularly poor soft 
tissue contrast. Magnetic Resonance Imaging (MRI) has much 
better soft tissue contrast without ionizing radiation. 
Moreover, MRI can provide multi-parametric information. 
Consequently, treatment systems combining a linear 
accelerator and an MRI have been recently developed (without 

additional CT) [1]. They allow real-time tracking and gating 
of tumors, patient repositioning and dose delivery. However, 
dose calculation only from MRI is still an outstanding problem 
as this modality does not provide tissue density information. 

To cope with this issue, two strategies may be 
distinguished from the literature. Either a pseudo-CT (pCT) is 
generated from the MRI to plan the dose [2]–[10], or a dose is 
directly generated from the MRI based on physical 
underpinnings [11]. 

 Within the first group, three approaches appear. Bulk 
density assignment approaches, aim to assign homogeneous 
densities to different volumes of interest (or tissue classes such 
as air, soft tissues, bones) defined on a target MRI [5], [9], 
[10]. Usually, densities are obtained from a CT set which have 
been manually or automatically segmented. This approach is 
simple, but it is user dependent and time consuming. Tissue 
heterogeneity is not considered, and so it could not be applied 
to bone tumor localizations [9]. There is no multimodal 
registration step in this approach. 

Machine learning approaches model the local 
relationships between intensities of co-registered CT and MR 
images. In prostate localization, Kapanen et al. [6], [12] used a 
polynomial regression to obtain pelvis Hounsfield Unit (HU) 
values. Johanson et al. [4], [7] employed Gaussian mixtures to 
predict HU values of head images. Huynh et al. [8] used a 
patch-based method through Structured Random Forests and 
auto-context to generate pCT. These methods show interesting 
results, but they are not yet validated for all cancer 
localizations. For some of them, the training set size is too 
small because of memory limitations of modern computers. 
Also, bones and air cannot be distinguished in standard MRI 
sequences. And consequently, sequences such as ultra-short 
echo time (UTE) may be required.  

The atlas-based methods, involve the registration of 
several MRI and CT atlases with a target MRI, followed by a 
CT atlas fusion step [2], [3], [13], [14]. Dowling et al. [2] 
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applied this methodology to prostate localization. Burgos et al. 
[3] extended this approach to images with different fields of 
view and employed an auto-context scheme to refine bone 
localization. One advantage of these methods is that they are 
fully automatized. Their dose results were in close agreement 
with the dose from standard CT planning. The main drawback 
is that they may not be robust to inter-individual variability 
[13] and several deformable registrations are necessary. In 
addition, registration errors could introduce bias in dose 
calculation.  

The second group, of physical-based approaches aims to 
compute dose directly from the hydrogen contained within the 
tissues, quantified by MRI, such as proposed by Demol et al. 
[11]. pCT generation is not necessary with this approach. 
However, to quantify hydrogen from MRI still an unsolved 
problem. Furthermore, MRI can fail to capture signal of 
tissues with short relaxation time (such as cortical bones and 
collagen). 

In this paper, we propose a machine learning approach 
based on Conditional Inference Random Forests (CIRF) and 
patch partitioning to generate pCT. Ten co-registered CT and 
MR prostate images have been considered. We evaluated the 
pCT by direct voxel comparison (Mean Absolute Error: MAE 
and Mean Error: ME from pCT and true CT) and with a 
dosimetric study (Dose Volume Histogram: DVH parameters 
and Gamma index). 

II. METHOD 

Our approach consists of the main components: i) 
Preprocessing step to deal with intra and inter patient intensity 
variability of MRI; ii) Registration step to bring all the 
training images to the same space; ii) Feature extraction to 
characterize relevant MRI information; iii) Patch partitioning 
to simplify and improve the modeling; iv) Learning step with 
multi CIRF to model MRI-CT relationships. v) pCT 
generation step, where the trained CIRF are applied to a new 
target MRI to generate the pCT. 

This approach is close to the one of Huynh et al. [8]. 
However, we perform a voxel-wise prediction and a different 
registration scheme (which considers patient shape 
variability). A lower number of features are exploited during 
the building model step. The whole pelvis is modelled. 
Moreover, a simpler RF method, the CIRF, with a different 
prediction scheme has been implemented. 

A. Data acquisition 

Ethics approval for the study protocol was obtained from 
the local area health ethic committee, and informed consent 

was obtained from all patients. Ten patients were considered, 
aged between 58 and 78 years, and all were diagnosed with 
tumors staged between T1 and T3. CT-scans were acquired on 
a GE LightSpeedRT large bore scanner (2.5 mm slices) or a 
Toshiba Aquilion (2.0 mm slices). T2-weighted 1.6-mm 
isotropic SPACE sequence with field of view to cover the 
entire pelvis were acquired with a Siemens Skyra 3T scanner 
(TE: 102 ms, TR: 1200 ms, flip angle: 135°). The MR scanner 
was equipped with a dedicated radiation therapy flat couch 
and coil mounts supplied by CIVCO Medical Solutions and a 
laser bridge from LAP Laser. Patients were MR imaged before 
treatment as close as possible to the acquisition of the 
planning CT-scan. 

B. Data pre-processing and intra patient registration 

The T2-weighted scans were preprocessed with the 
following steps built with the Insight Segmentation and 
Registration Toolkit. (i) N4 Bias field correction (B-spline 
fitting: [160, 3, 0, 0.5]; convergence: [100 x 100 x 100, 0.001]; 
shrink factor: 3). (ii) Histogram equalization (levels: 1024; 
match points: 7, threshold at mean intensity). (iii) Filtering via 
gradient anisotropic diffusion (10 iterations; time step: 0.03; 
conductance: 1.0). Further, each CT was co-registered to their 
related MRI (of the same patient) with a robust symmetric 
rigid registration [15], followed by structure-guided 
deformable registration (to promote bone rigidity while 
allowing high-quality bladder and rectum registration) [16]. 

C. CT and MRI model building 

The data were firstly divided into a training and validation 
sets (leave-one out scheme) among pre-processed images of 
10 patients. Further, inter-patient registrations have been 
performed to get all the training images in the same space. 
This involved a reference MRI being randomly selected and 
all images in the training set were registered by affine 
transforms.  

Three kinds of descriptors were calculated from the 
registered training MRI computed at three different levels of a 
Gaussian pyramid. The shrink factor of the pyramid (for all 
dimensions) was equal to 2(ே௨௠௕௘௥ ௢௙ ௟௘௩௘௟ ି ଵ)  and the 
variance of the discrete Gaussian function was equal to 

(
௦௛௥௜௡  ௙௔௖௧௢௥

ଶ
)ଶ. 

Spatial information. In order to account for spatial 
information, we used the Cartesian coordinates of the voxels 
(in the common space).   
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Gradient information. Edge information is important to 
distinguish different tissue classes or organs inside the images. 
For this purpose, we used Prewit and Sobel edge detectors and 
the Histogram of Oriented Gradients (HOG). The HOG aims 
to extract the shape of structures inside a region by capturing 
information about gradients. The image is divided in small 
cells where magnitude and orientation of the gradients are 
computed. Then, histograms are built in these areas by voxel 
weighted votes related to their orientation and magnitude 
gradient. In our study, four orientation bins have been 
considered (0-45, 45-90, 90-135, 135-180 degrees). 

Texture features. We additionally used 3D Haar-like, 
Local Binary Pattern (LBP) and Gabor filters. Haar-like 
features consist of two (or more) rectangular areas which are 
summed up and subtracted from each other. In our study, we 
used the 3D version of the Haar. The LBP principle is to 
compare, for each voxel, its intensity in relation to voxels 
belonging to its neighborhood. Thus, a binary pattern is 
obtained for each voxel. We considered a circular 
neighborhood of 8 voxels for the LBP building. Moreover, the 
patterns have been transformed into hexadecimal values for 
computational purpose. The Gabor filters are the product of 
Gaussians by sin or cosine functions. They aim to extract 
oriented and localized frequency information to describe 
texture. Four orientations have been employed for the wavelet 
computation (0, 45, 90, 135 degrees) and the Gaussian sigma 
has been fixed to 11/3. 

In total, 96 features were computed: 3 Cartesian 
coordinates (x, y, z), 9 Haar-like features, 2 LBP features, 8 
Gabor filters, 4 HOG features, 4 Prewitt filters, 4 Sobel filters 
(for each level of the image pyramid except the Cartesian 
coordinate). They are calculated from a sliding window with a 
size of 11*11*11 mm3. 

 Conditional Inference Random Forests (CIRF). The CIRF 
is a Random Forest method which aims to aggregate the 
results of several decision trees, built in a well-defined 
statistical framework. In classical decision trees, variable 
selection is realized with current information criteria (e.g. Gini 
index, entropy, etc.). These criteria tend to select variables 

with many possible splits or missing values. This can lead to a 
decrease in model accuracy. To overcome this issue, a 
significance test procedure has been proposed by Horthon et 
al. [14] during the fitting process. This procedure selects the 
most significant explained variable and uses this as a better 
split instead of selecting the variable that maximizes only an 
information measure. In our study, several CIRF have been 
used to get the relations between MRI and CT voxels (cf. Fig. 
1). We extracted patches from MRI descriptors and their 
related CT, and we trained the models from them.  

 The CIRF parameters are the following: test = univariate, 
p-value = 0.1, number of threes = 30, maximum depth = 12, 
minimum sum of weights in terminal nodes = 5, number of 
explanatory variables randomly chosen = 15. The size of the 
patches extracted from the CT and MRI descriptors was 
20*20*20 voxels. For the CIRF prediction, an aggregation 
scheme works by averaging observation weights extracted 
from each tree. Notice in classical Random Forest, the 
aggregation is realized only by averaging the prediction 
directly.   

D. Model application  

For this step, an MR test image was registered into the 
same coordinate space as the training set by affine transform. 
The features have been computed from this MRI. Then, 
patches were extracted on the feature images, and the trained 
CIRF were applied on them to generate the related pCT. 
Finally, the inverse affine transform is applied to the pCT to 
return in the native space (cf. Fig. 2). 

III.  EXPERIMENTS AND RESULTS 

A. Model validation: New MRI images 

For the validation, a leave one out scheme was used on the 
10 MR images. In average, we obtain a MAE = 45,79 HU and 
ME = 9.11 HU between the pCT and the related true CT 
(inside the whole pelvis). We compared these results through 
MAE and ME with those of an atlas-based method with the 
same data set and we obtained close results (cf. Table 1). 

 

Fig. 1.  Workflow model building 
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Table 1. Mean of the MAE and ME (pCT vs true CT) 

 MAE ME 

CIRF 45.79 ± 10.02 HU 9.11 ± 9.91 HU 

Atlas 44.42 ± 5.65 HU 15.15 ± 11.82 HU 

 

 

Fig. 2. CT and pCT images (left to right) 

B. Dosimetric study 

A dosimetric study was realized to compare our method 
(CIRF) with a bulk density method. For the bulk density 
method, water density was assigned to soft tissues and the 
mean bone density to the pelvis bones. A VMAT treatment (1 
arc, 38 fractions of 2 Gy) was planned on the CT and doses 
was recalculated on the pCT from both methods. The results 
for the DVH points D98%, D2%, V95% (Planning Target 
Volume: PTV) and D2% (rectum and bladder) are shown in  

 Table 2. For all volumes of interest, the relative dose 
differences are smaller than 2%. Regarding these DVH points, 
our method appears dosimetrically in close agreement with the 
standard CT planning and so clinically acceptable. In total, it 
depicts better results than the bulk density method (except at 
D2% in the PTV). To compare two dose distributions (CT vs 
pCT) the Gamma Index has been used [17], [18]. This index 
combines a dose difference (DD) criterion and a distance-to-
agreement (DTA) criterion. The dose difference criterion is 
defined as 

 
Ԧ௘ݎ)ߜ , (Ԧ௥ݎ = (Ԧ௘ݎ)௘ܦ  −  (Ԧ௥ݎ)௥ܦ

and the distance to agreement criterion as 

Ԧ௘ݎ)ݎ , (Ԧ௥ݎ = Ԧ௘ݎ | −  |Ԧ௥ݎ
where ܦ௘(ݎԦ௘) is the evaluated dose distribution and ܦ௥(ݎԦ௥) is 
the reference dose difference, at given grid points ݎԦ௘  and ݎԦ௥ .  

The gamma index is finally defined as 

Γ(ݎԦ௘ , (Ԧ௥ݎ = ඨ
Ԧ௘ݎ)ଶߜ , (Ԧ௥ݎ

ଶܦ∆ +
Ԧ௘ݎ)ଶݎ , (Ԧ௥ݎ

∆݀ଶ  

where ∆ܦ  and ∆݀  are the acceptance criteria for the dose 
difference and DTA, respectively (notice these criterions 
could be locally or globally computed). For our dose 
distributions, the 3D Gamma pass rate (local, ∆݀ = 1mm, ∆ܦ 
= 1%) was equal to 99,2% and the mean of this indicator was 
equal to 0.425 (cf. Fig. 3). 

 Table 2. Absolute mean of the relative dose difference (pCT vs CT) 

 

Fig. 3. Dosimetric results: CT and pCT doses, gamma index (left to right) 

IV. DISCUSSION AND CONCLUSION 

In this paper, a multi-CIRF and patch-based approach has 
been proposed for generating pseudo-CT from MRI. Ten 
pseudo-CTs have been generated from 10 co-registered MR 
and CT prostate images.  

Results suggest that our approach may be used for MRI-
based radiotherapy treatment planning. This approach is 
dosimetrically more accurate than a bulk density method and 
is a good competitor for atlas-based method. It is fully 
automatic and organ of interest delineation has not required. 
Tissue density heterogeneity is considered and the patch-based 
approach copes with memory limitations of modern 
computers. During the model application step, with our 
method, only two affine registrations are necessary to generate 
a pCT (going to the common space and applying the inverse of 
the previous transform to return in the native space). For an 
atlas-based method, the number of deformable registrations 
depend on the number of training atlases (in this case 9 
deformable registrations are necessary). Consequently, our 
approach is less computationally expensive. Moreover, no 
complex RF method as structured Random Forest is required 
[8], and few features (3D Haar, HOG, Gabor filter, …) need to 
be computed during the fitting process. 

 We observed that CIRF has some difficulties predicting 
HU values of unbalanced tissue classes inside patches. Indeed, 
we obtained good results for soft tissues (larger classes) and 
poor results for bones, air cavities, and bone-soft tissue 
interfaces (smaller classes). To overcome this limitation, non-
rigid registration methods could be used to better balance the 
classes. New patients could be added to the training set 

 
D98% 
(PTV) 

D2% 
(PTV) 

V95% 
(PTV) 

D2% 
(rectum) 

D2% 
(bladder) 

CIRF 0.45  
± 0.60 

0.71 

 ± 1.03 

0.18 

 ± 0.30 

0.91 

 ± 1.89 

0.37 

 ± 0.30 

Bulk  
density 

0.53  
± 0.28 

0.61  

± 0.58 

0.34  

± 0.28 

0.97 

 ± 1.41 

0.89  

± 0.78 
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thereby improving the variability. Moreover, another 
perspective may be to use weighted CIRF. As with all 
machine learning methods, our approach is heavily dependent 
on the number of patients and anatomical variability in the 
training set. To improve the robustness, we could also 
integrate UTE sequences to differentiate air cavities and 
bones. An auto-context scheme (using features computed from 
the CT) could be also used to distinguish air and bones. 
Another limitation of our method is the patch effect (aliasing) 
which appears in areas close to the bones (cf. Fig. 2). This 
patch effect is the consequence of distinct prediction errors of 
the patch-based CIRF in these localizations. Sliding windows 
(instead of this splitting process) would be a solution to 
suppress the patch effect, but with a much higher 
computational cost. Models more parsimonious than Random 
Forest could be also proposed, to deal with this issue, without 
increasing the computation time. Finally, a registration-less 
method exploiting patch similarity in the line  of Wang et al. 
[19] is part of future work. Image retrieval strategies using 
patch similarity, which are currently used in medical image 
segmentation, would also extend and improve our method.  
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