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Abstract—In the health self-management services it is benefi-
cial to identify and address the already existing healthy activity
patterns of the user. Some of these healthy activity patterns might
be of a utilitarian nature, e.g. commuting to work by bike or on
foot, or might be for leisure, like taking a walk in a park. In this
paper we discuss one possibility to detect the utilitarian or leisure
nature of a particular ambulatory path based on the geometry
of the trajectory. In essence, a leisure trip is more commonly
a round-trip while an utilitarian A-to-B trips follow the single
shortest path between A and B. We define a generic measure
for the characterization of utilitarian and leisure paths based on
GPS location data and develop an algorithm for approaching the
same based on only magnetometer data from a wearable device.

INTRODUCTION

When we go to work or visit a supermarket most of us are
likely to choose the shortest route to the destination and back.
On the other hand, a person having a walk for health purposes
often prefers choosing a path around an area, for example, a
nearby park or a block. This paper is based on this common
observation that some geometric property of a path may be
associated with the utilitarian or leisure character of a trip
the person takes. Experiments by [1] show clear geographic
and cultural differences but there is objective evidence that
utilitarian commuters typically choose the shortest route from
A to B [2].

It is commonly understood that lifestyle is one of the
most important determinants of overall health, see, e.g., [3].
Walking is a healthy and safe form of physical activity and
therefore it is often recommended in health programs aiming
at increasing the physical activity level of the user [4]. Walking
is also easy to measure using, e.g., pedometers, bracelets,
and apps [5], [6]. However, changing a lifestyle by adding
new active routines like healthy walks is not easy because
of various economical, social, and environmental constraints.
Therefore, health coaches often try to identify healthy routines
the customer already has and then ask the user to perform them
more often or make them more intense. In automated health
self-management programs where communication is based on
sensor data, it is not straightforward to know which routines
are healthy routines that can be boosted. People are not ready
to commute more often or extend a trip to a supermarket. On
the contrary, a healthy walk around a park can be repeated
more often or extended when the subject has the motivation
for it and understands the health benefits of it.

In this paper it is assumed that a geometric property of the
path may give an indirect indication of the purpose of the
trip. In particular, we assume that a trip may be an utilitarian
trip from a place A to B and back the shortest path, or a
healthy or leisure activity bout with a path that encloses a
geographic area. The path circularity measure introduced in
the following section is based on accurate geographic position
data. In absence of position data, the detection of the geometry
is of course more challenging. However, there are possibilities
to use various sensor modalities to detect if the user took the
same or different route when returning. There is anecdotal
evidence on how pets find a way back to home over long
distances, how migratory birds [7], [8] return back to the
nesting sites, a salmon finds the way back to the same creek
where it hatched [9], or rats learn paths in mazes [10].

Bio-inspired positioning based on local magnetic signatures
has been proposed in [11]. In the current paper this is extended
to the problem of detection of the return path. The ability of
animals to navigate a way back without a dedicated external
positioning infrastructure is a good model for the design of
data processing also in low-power wearable devices. In section
III, which is inspired by this observation, we focus on deriving
geometric properties from trips solely based on data output
by low-power magnetic sensors. For this we introduce two
algorithms for the identification of return path from a two-way
trip. Finally, the properties of the proposed measure and the
two algorithms are demonstrated using test data from wearable
sensors collected during cycling and walking trips.

CIRCULARITY IN POSITION DATA

Many personal health products and services come with an
app which tracks the location of the user by means of global
positioning techniques that rely on satellites or other beacons.
A location path can be represented by discrete time-series of
geographic points g(t) = [gx(t), gy(t), gz(t)]

T corresponding
to the latitude, longitude, and elevation, respectively. The
length of the path can be estimated by

L =
T−1∑
t=0

|g(t)− g(t− 1)|. (1)

There are several practical approaches also to compute the
area enclosed by the path. On a plane, one may use the popular
shoelace algorithm, see, e.g., [12]. The method works well
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with clean GPS data and in the current notation it can be
written by

A =
1

2
|
T−1∑
t=0

gx(t)gy(t+ 1) + gx(T )gy(0) (2)

−
T−1∑
t=0

gx(t+ 1)gy(t)− gx(0)gy(T )|

Segmented areas in binary images are sometimes characterized
by the ratio of the circumference to the area of a blob. see, e.g.
[13]. In this paper we use a very similar normalized circularity
measure for the path data. The measure is given by

C = 4π
A

L2
(3)

When the path is a full circle the formula gives the maximum
value C = 1.0, while for any other shape, the value is smaller.
The minimum C = 0 is obtained when the enclosed area
A = 0, that is, the same path was used in both ways on a visit
from A to B and back.

Figures 1 show histograms of walking, running, and cycling
trips by a group of 85 volunteers who were wearing an
activity tracking watch and an app with GPS localization in an
experiment lasting several weeks. Only semi-continuous trips
longer than one kilometer, with the start and end locations in
close proximity, were included in the data set. Both walking
and cycling trips contain significant number of utilitarian ABA
trips where C ≈ 0. In running data most of the trips had
a clear circular pattern, although, the running trips were not
very popular in this population of 85 subjects. As reference,
the histogram of transportation trips is shown. Most of the
trajectories classified as transportation event have a clear
utilitarian ABA trip pattern. Based on examination of the
location data it became clear that a large number of cycling
trips were indeed utilitarian visits to a supermarket or a work
place.

Fig. 1: Circularity C in a collection of walking, running,
cycling and transport trips in 85 individuals.

CIRCULARITY IN MOTION SENSOR DATA

Location data is typically not available in low-power wear-
able devices or indoors. However, some information about the
path can be also estimated from elementary inertial sensors.
In principle, it is possible to reconstruct a movement path by
double-integrating the accelerometer data. This often has a
significant drift due to sensor noise, nonlinearities, and other
artifacts. Magnetometer sensors use the magnetic field of the
Earth and therefore have a stable allocentric reference direc-
tion. Localization systems combining inertial and magnetic
sensors have been proposed for example in [14], [15].

If the path on the way back from B to A is similar to the
AB path, the enclosed area will be zero, and consequently
the circularity C → 0. One may say that the estimation of
the lower bound of circularity is coupled to the problem of
finding the return route, the task where many animals are very
good at. Finding the return route requires memory and the
ability to compare the current place to a memory signature. A
typical approach would be to compute some global correlation
metric between the two paths. It is often considered that
humans and other animals are able to remember the order
of historical events [16], and construct some cognitive spatial
maps of locations [10] which support this processing principle.
However, there is evidence that cognitive spatial information in
human (and non-humans) is organized as relations between lo-
cal contextual sub-maps rather than using a global geographic
framework [17]. This suggests an alternative processing model
where the correlations are computed between local segments.

Global return path tracking

The sensor data is a vector-values time series x(t). We
assume that when the sensor moves from A to B and returns
to A using the same path, the data corresponding to the path
BA is a rotated and temporally reversed and distorted version
of the time-series collected in AB. The sensor data for the
entire trip can be modeled as follows:

y(t) =

{
x(t), if , t < TB

Mx(ν(t)), if , t ≥ TB
(4)

where M is a rotation matrix and ν() is a time warping
function which is typically monotonically decreasing, i.e.,
mapping backwards in time. In a simplified case one may
assume that the return path xb is simply a time reversal of the
forward path, denoted xa. In matrix notation the time-reversed
path is then M←−I xb, where←−I is a reversal identity matrix and
xb is the return part of the path. The goal is to minimize the
loss

e = (M
←−
I xb − xa)

2 (5)

The least-squares solution for the rotation matrix M can be
found from the normal equations and is written by

(
←−
I xb)

T←−I xbM = (
←−
I xb)

Txa (6)

which reduces to

xT
bxbM = xT

b
←−
I xa (7)
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The ability to trace back the path requires the temporal
reversal of the first path, but also a rotation M of the sensory
data because the orientation of the body in relation to the
external field is different on the way back. A turn to the left
in one way is replaced by a turn to the right on the way back.

In the current paper the temporal mid-point is used as an
estimate of TB , because the start and end points are known and
a robust blind estimate of TB cannot be defined in a unique
way in the case of loop data.

The detection of an estimate for the lower bound of circu-
larity can be performed using the following algorithm:

Algorithm 1 Estimate based on linear time-alignment

Input: sensor time series x(t) from t = 0...T − 1 in
Output: circularity estimate Cm out

1: Estimate the turning point TB and divide the time series
to two parts xa and xb.

2: estimate the rotation operator M form the normal equation
xT
bxbM = xT

b
←−
I xa

3: time-align yb = Mxb and xa based on the maximum
point of the cross-correlation function which yields a time
shifted version ỹb.

4: Compute the inverse of the Pearson cross correlation
coefficient Cm = 1− P (xa, ỹb)

5: return Cm

The outcome of the algorithm is a measure Cm which
gives a small value when the data in the two ways has the
assumed time-warped temporal and geometric rotation, and a
larger value, when the similarity is low. If the return path is
a symmetrical mirror image of the AB path (e.g., in a perfect
circle or square path), it is possible to find a rotation matrix
R which gives a large value for Cm. In real movement data,
perfect mirror-symmetrical paths are unusual.

Return path matching using local dynamic time-warping

The pace on the way back may be different in different
parts of the path which cannot be compensated for by the
time-alignment operation in the global path matching algo-
rithm above, where ν(t) was merely a time-reversal and shift
function. A generic (reversed) time-warping function can be
estimated using various methods for dynamic time warping
(DTW) [18]. These methods are typically based on a piece-
wise linear time-warping function ν(t) matched to the data.
One can note that this is conceptually similar to the biological
mechanism of remembering the return path as sequence of
local contextual sub-maps. The algorithm can be written as
follows:

The following experiments were based on the DWT imple-
mentation available in the Matlab Signal Processing Toolbox
2016b which is based on the method detailed in [18].

EXPERIMENTS

The test data contains multisensor (Shimmer3) measure-
ments of a cyclist riding 1-3km loops and two-way trips in
a suburban area close to Eindhoven, The Netherlands. The

Algorithm 2 Estimate based on dynamic time-warping

Input: sensor time series x(t) from t = 0...T − 1 in
Output: circularity estimate Cd out

1: Estimate the turning point TB and divide the time series
to two parts xa and xb.

2: estimate the rotation operator M form the normal equation
xT
bxbM = xT

b
←−
I xa

3: Find and optimal dynamic time-warping function ν(t) that
minimize a norm of yb − ỹb, where ỹb = ν(Mxb).
Typically DFT algorithms are based on a least squares
norm.

4: Compute the inverse of the Pearson cross correlation
coefficient Cd = 1− P (xa, ỹb)

5: return Cd

sensor contains two 3-axis accelerometer devices, gyroscope,
pressure sensor, and a 3-axis magnetometer. The device was
attached to the chest of the cyclist using an elastic strap. The
GPS location data was collected using an app in a smartphone
carried by the cyclist. In total, 14 loops or two-way trips were
recorded. Examples of the cycling paths are shown in Fig. 2.
The measures of circularity based on the location data (C) and
the magnetometer data Cm are marked in the figures.

Fig. 2: Examples of cycling path trajectories.

An example of raw magnetometer data from an AB trip is
shown in the top panel of Fig. 3. The return trip from B to A
is shown in the middle panel and the rotated and time-aligned
yb signal of the BA trip is in the bottom panel. The bottom
and top panels are visually similar which is also reflected in
the circularity estimate Cm = 0.05.

The box plot of the circularity measure, derived from the
collection of location and magnetometer data of loops and
two-way trips in cycling and walking data, is shown in Fig. 4.
In the cycling case there are three pairs of box plots represent
the two kinds of trips using GPS data, global time alignment
(TA) only, and the signals matched using DTW. The difference
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Fig. 3: Top) Magnetometer time-series of a cycling trip AB.
Middle) from BA, and bottom) rotated and time-aligned BA
data.

in the GPS and two other conditions is significant with a
tiny p-value in all cases (p < 10−5). Between the TA and
DTW conditions there is a mild trend for the benefit of
the DTW method but the difference is not significant. The
bottom figure of Fig. 4 shows the circularity estimates for
8 ABA and 5 loop walking trips. The walking data was
collected with the sensor attached to the belt of the subject
which led to large movement artifacts in the magnetometer
data. In this case the difference in the circularity estimate is
only weakly significant in using linear temporal alignment
(p = 0.07) but there is a benefit from using the DTW
method where we get a significant difference with a p-value
of p = 0.007. The same experiment was also performed using
accelerometer, gyroscope, temperature and air pressure data.
However, the results in the experiments were less convincing
and the difference in Cm was significantly smaller than in the
magnetometer data. However, the estimate for the circularity
estimates Cm computed from the magnetometer data using
algorithms 1 and 2 are different in absolute numbers from the
real geometric circularity measures computed from the GPS
data.

RESULTS AND DISCUSSION

In personal health services focused on lifestyle behavior
change it is important to be able to address the current
activities correctly in providing feedback, motivation, and
advices. Often the only information source is sensor data, for
example, from a wearable device, which has little semantic
context. In this paper we study the possibility to get additional
information about the activities of a subject from the path
trajectories. It is assumed that ambulatory trajectories can be
divided into utilitarian and leisure trips based on the whether
a subject returns the same path from a trip from A to B,
or encloses an area by a loop, respectively. In particular,
a measure, circularity, is proposed which characterizes the

Fig. 4: The estimate of the circularity computed from GPS
data, linear time-alignment (TA) and DTW in two-way trips
(ABA) and loops in cycling (top) and walking (bottom) data,
respectively. GPS data was not available with the walking data.

overall geometric property of the trip as a ratio of the enclosed
area and a square of the path length.

It is first demonstrated that the histograms of the proposed
measure in walking, running, and cycling trips in sensor data
from a population of 85 volunteers look plausible. Secondly,
the measure is computed from geographic location tracking
data of a collection of cycling and walking paths, which
represent either utilitarian or leisure trips.

In many cases real geographic location data is not avail-
able and therefore the estimation of the circularity becomes
impossible. However, one may note that the lower margin of
the circularity can be found even in the case where the subject
on a trip from A to B and back returns the same path. Finding
a way back is a common phenomenon in many biological
organisms which do not have any means of global positioning.
For example, the local magnetic signature is related to the
environment or direction of movement is known to be used
by many animal species including migratory birds and fishes.
The proposed algorithm can be seen as an imitation of the
process of reverse navigation based on local magnetic cues.
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In the paper we demonstrate that the algorithm in application
to the cycling and walking data of utilitarian and leisure trips
shows a significant difference in the estimated lower bound
for the circularity.
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