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Abstract—In this paper, we develop a novel second-order
method for training feed-forward neural nets. At each iteration,
we construct a quadratic approximation to the cost function in
a low-dimensional subspace. We minimize this approximation
inside a trust region through a two-stage procedure: first inside
the embedded positive curvature subspace, followed by a gradient
descent step. This approach leads to a fast objective function
decay, prevents convergence to saddle points, and alleviates
the need for manually tuning parameters. We show the good
performance of the proposed algorithm on benchmark datasets.

Index Terms—Deep learning, second-order approach, noncon-
vex optimization, trust region, subspace method.

I. INTRODUCTION

Deep neural nets are among the most powerful tools in
supervised learning, which have shown outstanding perfor-
mances in various application areas [1]. Unfortunately, training
such nets still remains a time-consuming task. It is thus of
primary importance to design new optimization algorithms that
allow one to perform this training in a more efficient manner.

Stochastic gradient descent (SGD) is one of the most pop-
ular algorithms for neural network training. However, being
a first-order optimization scheme, SGD presents a number of
pitfalls due to the nonconvex nature of the problem at hand.
First, a proper learning rate can be difficult to select, causing
SGD to slow down or even diverge if the stepsize is chosen too
large. Additionally, the same learning rate applies to all weight
updates, which may be suboptimal in a deep net, because of
vanishing/exploding gradient problems. It is well known that
in many cases the average norm of the gradient decays for
earlier layers [2]. Lastly, the algorithm can be trapped into
one of the plateaus of low gradient length, which slows down
the learning process.

Numerous variants of SGD have been developed for cir-
cumventing the aforementioned issues [3]. Several of them
are grounded on well-known accelerated first-order schemes,
such as momentum [4] and Nesterov accelerated gradient [5],
whereas others revolve around adaptive learning rate strategies,
such as Adagrad [6], Adadelta [7], RMSProp [8], and Adam
[9], the latter being one of the fastest algorithms among first-
order schemes. It was also shown that deep learning is possible
with first-order methods in case of suitable initialization and
proper schedule for momentum [10].

Recently, a renewed attention has been paid to second-
order optimization schemes, because of their ability to reach

lower values of the error function compared with first order
methods, in particular for deep autoencoders [11] and recurrent
neural nets. Martens [12] proposed a Hessian-free approach
based on a conjugate gradient descent for minimizing a local
second-order approximation of the error function limited to a
data minibatch, resorting to damping for avoiding too large
steps, coupled with a Levenberg-Marquardt style heuristics to
update the damping parameter. The author successfully applied
his method to deep autoencoder training, and recurrent nets
training [13]. Vinyals and Povey [14] proposed to optimize
the objective function within the Krylov subspace delineated
by the previous iterate, the gradient, and products of powers of
Hessian and gradient. Typically, the chosen dimensionality of
the space ranges between 20 and 80. The resulting quadratic
function in the K-dimensional space is minimized using K
iterations of BFGS. The authors reported significant speeds up
compared with Hessian-free optimization. In contrast with the
two previous methods, Dauphin et al. [15] proposed a saddle-
free Newton approach that uses the exact Hessian matrix
(instead of a Gauss-Newton approximation) within a Krylov
subspace of moderate dimensionality. The authors show that
the Hessian matrix in this subspace is usually not positive
definite, but it suffices to replace the negative eigenvalues
with their absolute values in order to make this Newton-
like method saddle point repellent. The authors reported some
improvements in the context of autoencoding training.

In this paper, we propose a neural network training algo-
rithm that combines trust region [16], [17] with a subspace ap-
proach [18], [19], thus satisfying the following requirements:

1) it exploits the second-order information in order to
move in directions of low curvature;

2) it uses as many learning rates as network layers, so as
to update different blocks of weights at different speeds;

3) it relies on an automatic procedure to optimally adjust
the learning rates at each iteration.

The paper is organized as follows. In Section II, we provide
the general idea of our algorithm. In Section III, we discuss
the subspace choice. In Section IV, we explain how to estimate
the learning rates within the trust region. In Section V, we put
all these techniques together and detail the resulting algorithm.
In Section VI, we show the numerical results obtained with
our approach. Finally, conclusions are drawn in Section VII.
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II. GENERAL IDEA

Training a neural network amounts to finding a weight
vector w ∈ RN that minimizes a global error function
F : RN → R, so yielding the optimization problem:

minimize
w∈RN

F (w). (1)

The error function F is a sum of many nonconvex twice-
differentiable terms, one for each input-output pair available
in the training set. In a stochastic setting, the data are decom-
posed into minibatches. We denote by Fj(w) the error function
evaluated over the j-th minibatch, which can be viewed as
a stochastic approximation of function F as minibatches are
randomly selected throughout the optimization process. In the
following, we denote the batch (resp. minibatch) gradients by

g(w) = ∇F (w) (resp. gj(w) = ∇Fj(w)),

and the batch (resp. minibatch) Hessians by

H(w) = ∇2F (w) (resp. Hj(w) = ∇2Fj(w)).

Consider the K-dimensional subspace S spanned by some
orthonormal vectors d0, . . . , dK−1 in RN , and let V =
[d0 . . . dK−1] ∈ RN×K . Our proposal consists of updating
the weight vector according to the following rule:

w ← w −
K−1∑
k=0

αkdk = w − V α,

where α = [α0, . . . , αK−1]
T is a vector of learning rates.

A local quadratic Taylor expansion of the error function
around the current point w reads:

Fj(w + ∆w) ≈ Fj(w) + gj(w)
T

∆(w) +
1

2
∆wTHj(w)∆w.

By substituting ∆w = −V α, we get

Fj(w − V α)− Fj(w) ≈ −rTα+
1

2
αTBα = Q(α),

by introducing B = V THj(w)V and r = V T gj(w).
Note that although Q(α) is a quadratic function of α,

curvature matrix B is not necessarily positive definite when
Fj is nonconvex.

The classical trust region method [17] consists of minimiz-
ing a quadratic approximation to the cost function within a
ball around current point w, defined as

‖∆w‖2 ≤ ε2.

In the proposed subspace approach, the trust region corre-
sponds to a Euclidean ball for the coefficients α, defined as

‖∆w‖2 = ‖V α‖2 = ‖α‖2 ≤ ε2.

Then, the main step of our approach is the minimization of
the quadratic function inside the trust region, namely

find α∗ = arg min
‖α‖2≤ε2

Q(α).

The trust region bound ε is then determined with backtracking
and linesearch, with the aim to maximize the decay of Fj .

Unfortunately, preliminary experiments suggested us that
such a classical approach results in a relatively slow mini-
mization process. In our view, a possible explanation for this
fact is as follows. The location of the minimizer of Q(α)
inside the trust region is mostly determined by the negative
curvature directions of the quadratic form αTBα (in these
directions Q(α) decreases most rapidly). Negative curvature
directions are however not very reliable, because the objective
function is usually bounded from below. In practice, this yields
very small steps of the algorithm, as the trust region size
is chosen so as to decrease the function (backtracking), and
thus the resulting norm of the update is small. One more
observation confirming this fact is that in the case when B
becomes positive definite, then the decrease of the function is
of higher order of magnitude compared with situations when
a negative curvature is present.

As suggested in [15], a possible solution could be to ignore
all negative curvature directions. But in that case, the algorithm
will hardly escape from saddle points. We experimented this
strategy, and it already showed better results than the classical
trust region approach, expecially for deep nets.

In this work, we propose instead a two-stage approach that
combines the above strategies. At the first stage, we ignore
negative curvature directions and address the trust region
problem only for the subspace generated by positive curvature
eigenvectors. With backtracking, we find a trust region size
that allows us to decrease the function Fj , and we move to the
point just found. At the new point, we re-compute the gradient
and make gradient descent step. The stepsize is determined
with linesearch and backtracking.

Thanks to the gradient descent step in the second stage,
the proposed algorithm possesses the capability to move away
from saddle points. Moreover, it should make fast progresses,
because of large steps performed at the first stage in the
subspace of positive curvature eigenvectors.

III. CHOICE OF THE SUBSPACE

Although previous works [12], [15] employ subspaces of
relatively high dimensions (from 20 to 500), our experiments
show that a much lower dimensionality is beneficial in terms
of error decrease versus time. Indeed, each additional vector
in the subspace requires the evaluation of a different Hessian-
vector product at each iteration, which is obviously time
consuming.

Consider the minimalistic subspace generated by 2 vectors,
namely the gradient and the previous iterate [18]:

S2(wn) = span {g(wn), wn − wn−1} . (2)

(For simplicity, the iteration index n will be omitted in the
following.) For logistic regression problems, this subspace is
enough to achieve relatively fast convergence, but for neural
nets the situation is different. A possible explanation for this
may be related to the vanishing/exploding gradient problem.
Thus, we would desire to allow distinct learning rates for
weights from different layers.
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Consider a feed-forward neural net with L layers and some
vector space basis vector dk ∈ S of a K-dimensional subspace
S. We can block-decompose dk and the weight vector w as
follows

dk =


d0
k

d1
k
...

dL−1
k

 , w =


w0

w1

...
wL−1

 ,
where blocks dlk and wl correspond to layer l of connections
of the neural net. Then, the separation of learning rates αlk for
each layer l and vector dk results in the updates

wl ← wl −
K−1∑
k=0

αlkd
l
k,

which is equivalent to consider a larger subspace generated by

d̃0
k =


d0
k

0
...
0

 , d̃1
k =


0
d1
k
...
0

 , . . . , d̃L−1
k =


0
0
...

dL−1
k

 ,
leading to

w ← w −
L−1∑
l=0

K−1∑
k=0

αlkd̃
l
k.

The resulting update scheme is similar to SGD with mo-
mentum, but with separate learning rates for each layer and
automatic choice of them at each iteration.

Note that our algorithm requires the vectors forming the
subspace to be orthonormal. Since these vectors are nonzero
only in one block, the task of orthonormalization is split into
L separate lower-dimensional subtasks. A similar argument
applies for efficiently computing the Hessian-vector products.
Indeed, the vectors to be multiplied are non-zero only in one
block. We can thus avoid redundant calculations by carefully
extending the popular R-technique [20] to the sparse case.

IV. MINIMIZATION WITHIN THE TRUST REGION

The problem of finding the minimizer of a quadratic func-
tion inside an Euclidean ball has been well investigated. Here,
we modify the classical algorithm [16] in order to apply our
two-stage approach. Let us recall that the quadratic function
is expressed as

Q(α) = −rTα+
1

2
αTBα, α ∈ R2L,

with K = 2 as in (2). Suppose that the eigenvalues of B
are λ1 ≤ · · · ≤ λ2L, and the corresponding eigenvectors
are denoted by v1, . . . , v2L. Assume that the first positive
eigenvalue in the list is λi0 (we assume that there exists at
least one positive eigenvalue, otherwise the first stage is not
performed at all). Let us define the vector r̃ with components
r̃i = rT vi, i ∈ {1, . . . , 2L}. When the trust region is given by
‖α‖ ≤ ε, we need to find λ ≥ 0 such that the matrix B+λI is
positive definite, and ‖ (B + λI)

−1
r‖ = ε. Then, the minimal

value inside the trust region is reached at α = (B + λI)
−1
r.

Matrix B can be represented as:

B =
2L∑
i=1

λiviv
T
i .

When we need to compute the minimum in the subspace
spanned by its positive eigenvectors, we just restrict the sum
to

B+ =
2L∑
i=i0

λiviv
T
i .

Then, in order to find λ, we solve the nonlinear equation:

φ+(λ) =
2L∑
i=i0

r̃2
i

(λi + λ)
2 = ε2

subject to λ > −λi0 . Since φ+(λ) is monotonically decreasing
and convex, we resort to Newton method. It is important to
initialize it at the point λ(0) > −λi0 such that φ+(λ(0)) > ε2.
In this way, sequence λ(n) will be monotonically increasing
and will not jump from the region of interest λ > −λi0 .

One more point to pay attention to is that this algorithm
(for positive part) is applicable in the case when the global
minimizer of the quadratic function given by

α∗ =

2L∑
i=i0

r̃i
λi
vi, ‖α∗‖2 = φ+(0)

is outside the trust region we consider. For our algorithm this
is always the case (see next section for details), so we can
initialize λ(0) = 0 for Newton iterations.

When r̃1 = 0, the initial problem is more difficult, as
the solution is not guaranteed to be unique. Fortunately,
Nesterov et al. [21] suggested a simple way to avoid the
difficulties arising in this case. We need to choose any index
k0 such that vk01 6= 0 (in fact we search for the index of the
maximum absolute value of vk1 ), and make the assignment
r(k0) ← r(k0) + ε0. It can be proven that as ε0 → 0 the
minimum point for this shifted problem converges to some
minimum point of the initial one.

When the value λ is found, the minimizer α∗ (for the
positive curvature directions) in the trust region is given by

α∗ =
2L∑
i=i0

r̃i
λi + λ

vi

V. DETAILS OF THE MAIN ALGORITHM

Algorithm 1 describes the general procedure in more details.
It starts by randomly selecting a minibatch and dividing it into
L roughly equal sub-minibatches. Minibatches and submini-
batches contain equal number of training elements from each
class. The gradient is computed using the whole minibatch,
while for each Hessian-vector product the sub-minibatches
are used. So doing, the calculation of all 2L Hessian-vector
products requires only about twice more time than computing
the gradient. Note that a similar idea was implemented in the

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 303



Hessian-free optimizer [12]. Then, the algorithm performs the
two-stage procedure explained earlier.

We found out that backtracking and linesearch greatly
increase the convergence speed. In both stages, after the first
guess of α, we perform fictive updates of weights and compute
the real value of the minibatch function at this new point.
When there is no decrease of value, we start decreasing the
trust region size by a factor 0.5. This process of shrinking the
trust region is finite, because the gradient of Fj is calculated
exactly, and it can be shown that all updates calculated with
trust region algorithm have an obtuse angle with the gradient.
After a decrease of the function is obtained, we continue
reducing the trust region by a factor 0.7 to maximize the
function decay.

In the second stage, we use the previous gradient descent
step length as the initial guess, and we start with the point
obtained in the first stage. Moreover, after the first guess of
step length where we got a decrease of the function, we also
start increasing it by a factor 1.3, and stop when a decrease
smaller than at previous tested size is obtained.

VI. EXPERIMENTAL RESULTS

In order to assess the performance of our algorithm, we
considered the training of fully-connected multilayer neural
networks with MNIST, a benchmark dataset of handwritten
digits. First, we performed some experiments to show the
validity of the proposed two-stage trust region procedure. Sec-
ondly, we compared our approach with two popular methods:
Adam [9] and RMSProp [8].

A. Two-stage trust region assessment

In our first experiments, we investigate how to handle
negative eigenvalues of the matrix B, by testing the following
approaches:

Trust region - A minimizer of Q(α) is found subject to
‖α‖ ≤ ε. Backtracking and linesearch are used to determine
the optimal value of ε.

Only positive - The coefficients of α are chosen from the
subspace generated by the eigenvectors of B corresponding to
positive eigenvalues. Negative eigenvalues are ignored.

Saddle free - Negative eigenvalues of B are replaced with
their absolute values, then the trust region method is applied.

Positive-negative - A minimum inside the trust region for
the positive eigenvector subspace is found. After that we
move to this new point, recompute the gradient, and consider
the subspace generated by negative eigenvectors. Trust region
sizes at both stages are determined with linesearch.

Negative-positive - Same procedure as Positive-Negative,
except that the order of first and second stages is inverted.

Two-stage - The proposed approach. A step in the positive
subspace is followed by a gradient descent step.

We tested the above approaches for a 2-layer net with 50
hidden units (784-50-10), and 3-layer net with 784-50-50-10
architecture. The same subspace and backtracking/linesearch
algorithms were used for all tested methods. We used softmax
output, tanh hidden functions, and the cross-entropy error

Algorithm 1 Two-Stage Subspace Trust Region
Randomly initialize w0

w1 ← w0 − ε0g0(w0); ∆1 ← ε0‖g0(w0)‖
for j = 1, 2, . . . do

Calculate gradient gj(wj)
for l = 0, . . . , L− 1 do
{dl0, dl1} ← orthonormalize

{
glj(wj), w

l
j − wlj−1

}
Calculate Hjd

l
0 and Hjd

l
1 with sub-minibatches

end for
Vj ← {d0

0, d
1
0, . . . , d

L−1
0 , d0

1, . . . , d
L−1
1 }

Find Hessian B and gradient r for subspace:
for k1, k2 = 0, 1 and l1, l2 = 0, . . . , L− 1 do
B[k1L+ l1][k2L+ l2]←

(
dl1k1 , Hjd

l2
k2

)
r[kL+ l] =

(
gj(wj), d

l
k

)
end for
Find {λ1, ..., λ2L}, {v1, . . . , v2L} for B

First stage (positive curvature step):
if λ2L > 0 then
α∗ ←

∑2L
i=i0

r̃i
λi
vi, ∆← ‖α∗‖

Define operator α∗(∆)← arg min‖α‖≤∆Q+(α)
if Fj(wj − Vjα∗) > Fj(wj) then

Do ∆← 0.5∆ until Fj(wj − Vjα∗(∆)) < Fj(wj)
end if
Do ∆← 0.7∆ until
Fj(wj − Vjα∗(0.7∆)) > Fj(wj − Vjα∗(∆))
wj ← wj − Vjα∗(∆)

end if

Second stage (gradient descent step):
if λ2L > 0 then

Recalculate gj(wj)
end if
if Fj(wj −∆1

gj
‖gj‖ ) > Fj(wj) then

Do ∆1 ← 0.5∆1 until Fj(wj −∆1
gj
‖gj‖ ) < Fj(wj)

Do ∆1 ← 0.7∆1 until
Fj(wj − 0.7∆1

gj
‖gj‖ ) > Fj(wj −∆1

gj
‖gj‖ )

else
Do ∆1 ← 1.3∆ until
Fj(wj − 1.3∆1

gj
‖gj‖ ) > Fj(wj −∆1

gj
‖gj‖ )

end if
wj ← wj −∆1

gj
‖gj‖

end for

function. This error function was measured after each epoch on
the whole training set. We also used quadratic regularization
with coefficient 10−4. The results are shown in Figs. 1 and
2, indicating that the proposed two-stage strategy exhibits the
best performance.

B. State-of-the-art comparison

We also compared the proposed approach with two popular
first-order methods: Adam [9] and RMSProp [8] on a 8-layer
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Fig. 1. Comparison of second-order methods for a 784-50-10 network.

Fig. 2. Comparison of second-order methods for a 784-50-50-10 network.

net with 784-80-70-60-50-40-30-20-10. We again used tanh
units, softmax output, and the cross-entropy error function.
We also used sparse initialization, which prevents saturation
of learning at the beginning [10]. Fig. 3 reports the value of
the error function versus the elapsed time. This experiment
shows that our approach performs much better than first order
methods on such deep network. This happens because the
second-order information exploited by our algorithm, despite
requiring more computations per iteration w.r.t. first-order
methods, pays off with larger updates on deep networks.

VII. CONCLUSION

In this work, we have proposed a two-stage trust region
subspace approach for training neural networks. According to
our preliminary results, our algorithm appears to be faster than
first-order methods for deep network training. This was made
possible by carefully taking into account the local geometrical
structure of the graph of the non convex error function in a
suitable subspace. This allowed us to use different learning
rates for each network layer that are automatically adjusted at
each iteration. For the future, we plan to extend our algorithm
to other deep architectures.
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