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Abstract—In this paper, iterative decoding using Belief Propa-
gation λ-min decoding algorithm is considered. In this algorithm
check nodes use only the λ lowest-magnitude messages thus
simplifying the hardware complexity and reducing memory
usage. A parallel-input architecture is proposed for the check
node. We focus on the determination of the sought minima in a
parallel fashion. Novel simplified circuits for the derivation of the
λ minimum values are introduced here. The main novelty that
leads to substantial hardware simplification is the approximate
derivation of the λ values. Specifically, We here show that using
the introduced approximate computation substantial hardware
savings are obtained with no significant degradation in decoding
performance. For cases of practical interest the proposed solution
is shown to reduce the number of comparisons per check node
from 14 down to 7; i.e., 2 times.

Index Terms—Low density parity-check codes (LDPCc), Belief
propagation decoding algorithm (BP), Belief propagation λ-min,
λ-min approximation.

I. INTRODUCTION

LDPC codes, initially discovered by Gallager [1] and later
re-invented, have proliferated in applications and have been
adopted in several international standards, such as Wi-Fi
IEEE 802.11n/ac, digital television (DVB-S2/T2/C2), ITU-T
G.hn/G.9960 for power line communications, CMMB, IEEE
802.3an for 10 Gbps Ethernet over twisted pair, etc. LDPC
codes offer strong error correction that can be exploited by
iterative decoding, which renders efficient decoders feasible.
To improve the efficiency of iterative decoders, several LDPC
iterative decoding algorithms have been proposed. Optimal
decoding is achieved by the so-called sum-product (SP) algo-
rithm and its implementation in the logarithmic domain, the
log-SP. To further reduce complexity, several approximations
to log-SP have been proposed in the literature. Prominent
among them are the min-sum algorithm, the normalized min-
sum, and the offset min-sum.

In this paper we propose simplified networks for the approx-
imate derivation of the λ-minimum values out of the messages
that enter a check node. We show that the approximate
computation has a minor impact on the decoding performance
of the λ-min algorithm [2]; however it substantially reduces
the hardware complexity of the check node. The proposed
approach is useful as it facilitates the implementation of
decoders with check nodes that receive messages in parallel.
In fact the proposed method reduces the sorting complexity
by more than two times. Hence the design of highly parallel
decoders based on λ-min algorithm becomes possible.

The remainder of the paper is organized as follows: Sec-
tion II reviews basics of the iterative decoding algorithms.
Section III introduces the proposed approximate technique,
while Section IV quantifies hardware savings achieved in the
check node. Finally, conclusions are discussed in Section V.

II. ITERATIVE DECODING AND THE λ-MIN ALGORITHM

A. Belief Propagation algorithm
Belief propagation (BP) algorithm, also called sum-product

message-passing, has been proposed for decoding LDPC
codes. BP is an iterative algorithm with optimal performance
that approaches Shannon’s limit [3] and it is detailed below.
Assume that the Parity Check matrix of the corresponding
LDPC code is H , Channel LLRs are yn, n ∈ {0, 1, .., N −1},
Variable nodes are un, n ∈ {0, 1, .., N − 1}, Check nodes
are cm, m ∈ {0, 1, ..,M − 1}, Check-to-Bit messages are
L(i)
mn, Bit-to-Check messages are Z(i)

mn, Soft values of variables
are Z(i)

n , and the Initializing information is L(0)
n = 2ynσ2 This

is used in the first iteration as Z(i)
n . Exponent (i) indicates

computation at the ith iteration. The Iterative process is as
follows:

1) Check-to-Bit messages update: for all cm and the un
connected to them we compute.

S(i)
mn = sign(Z(i)

mn)×
∏

nεN(m)

sign(−Z(i)
nm) (1)

For all the variables connected except the one we
compute, its message is derived as:

M (i)
mn = −

⊕
(− |Zmn′(i) ]|) (2)

where symbol
⊕

denotes the commutative and associa-
tive function [4]:

I1 ⊕ I2 =
exp(I1) + exp(I2)

1 + exp(I1 + I2)
(3)

with ⊕(In) = I0⊕I1 . . .⊕In. From (1) and (2), Check-
to-bit messages are obtained as

L(i)
mn = S(i)

mn ×M (i)
mn (4)

2) Bit-to-Check message update: for all um and each
cm connected to them we compute Z

(i)
n = L

(0)
mn +∑

mεM(n) L
(i)
mnand Z(i)

mn = Z
(i)
n − L(i−1)

mn

3) For stopping criteria compute: x̂i = sign(Z
(i)
n ) and

si(x̂i) = H × x̂i. If si(x̂) = 0, the decoded codeword
is correct and decoding stops with success. If it is not,
operation proceeds to the next iteration. The procedure
terminates when iterations reach a predefined number.
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Fig. 1. Comparison of BP and BP λ min with offset

B. Simplified BP algorithms and BP λ-min decoding

Many simplifications of the complex check-node process in
BP have been proposed such as [5] or the well-known BP-
based algorithm proposed in [6]. This algorithm is simple but
there is significant degradation in performance.

An interesting simplification is proposed in [7] called BP
λ-min. Equation (3) can be written:
I0 ⊕ I1 = − sign(I0) sign(I1)min(|I0| |I1|)
+ ln(1 + exp(− |I0 − I1|))− ln(1 + exp(− |I0 + I1|)). (5)

In the λ-min approach, the check nodes produce messages
only by using λ lower-magnitude values of messages received,
with λ > 1. A new subset is created, namely Nλ(m) =
(n0, n1.., nλ−1), which contains these λ values. Subsequently,
(2) is computed using only the limited set of approximated
values. In this case if the bit processed belongs to the Nλ(m),
(2) uses only the λ− 1 values of the subset, otherwise it uses
all values in the subset Nλ(m). Furthermore an offset β can
be used to reduce the performance loss over BP [2]:

L(i)
mn = S(i)

mn ×max(M (i)
mn − β, 0), β > 0 (6)

Optimal determination of β is achieved experimentally. As-
suming a code rate-1/2 648-bit LDPC code used in WiFi,
with check degrees 7 and 8, Fig. 1 compares BP and λ-min
decoding in terms of BER vs. noise level behavior after a
maximum of 50 iterations, using λ = 3 and β = 0.3.

III. PROPOSED APPROXIMATE ORDERING

The hardware architecture of the check node for the BP λ-
min algorithm [2] is a serial-input component, as messages
enter one-by-one, one per clock, as shown in Fig. 2. This
architecture cannot be directly employed in a parallel de-
coder requiring check nodes that receive messages in parallel.
Although there are drawbacks, a serial mode architecture is
less complex and thus it is up to the designer to select the
most appropriate implementation exploring trade-offs between
timing and hardware complexity.

When a parallel-input approach is opted for the check node,
there is a huge variety of sorting networks that can be used for

Fig. 2. Architecture of Check node process

Fig. 3. Knuth diagram for sorting 8 messages

the identification of the λ minima, one of the tasks of the check
node as shown in Fig. 2. The check node performs three tasks.
Block sign update defines the total sign using all variables
connected to the certain check node. Block λ-minimum defines
the λ lowest magnitude values and is detailed below. The other
block calculates, with the help of look up tables, the λ+1
extrinsic values used by the check node along with the signal
to result in the final values for each check node message to
the variables. The exponent (i) indicates the current iteration
of the decode operation.

For the particular experiments an irregular code rate-1/2
648-bit LDPC code with check degrees of 7 and 8 is assumed.
The sorting network we use [8] to identify the λ-minimum
values is shown in the Knuth diagram in Fig. 3. In Knuth
diagrams, each time two messages are compared, the minimum
value is streamed to the upper wire and the maximum value to
the lower. For this particular code, the operation demands the
use of 19 comparators for the full sort and 14 comparators for
the sort of the λ-minimum values of information, λ = 3. The
higher the check degree is, the complexity of the network in-
creases. Due to the complexity of this operation and motivated
by an efficient approximation used for the min-sum algorithm
[9], the approximation of the λ-minimum values of the check
messages set is proposed.

A. Proposed approximation using 13 comparisons

The first approximation proposed is depicted in Fig. 4 and
it utilizes 13 comparators. This network can always identify
correctly the exact two minimum values from the set of the
input messages but the third value is approximated. At first
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Fig. 4. Approximation using
thirteen comparisons

Fig. 5. Approximation using
seven comparisons

we split the received messages into the upper and the lower
subset of four messages. After ten comparisons are performed,
we have defined the two minimum values of the each subset.
The next stage uses two comparisons to identify the first and
the second minimum values. The next comparison defines the
approximation of the third minimum value. This operation
identifies all three minimum values correctly when they do
not belong in the same subset, upper or lower.

For example, assuming a set with a total of 8 messages
Sin = {2, 4, 7, 1, 9, 3, 5, 8}. The upper subset is Su =
{2, 4, 7, 1} and the lower Sl = {9, 3, 5, 8}. After the first
10 comparisons we have Su10 = {2,1} and Sl10 = {3, 5}
which are the minimum values of the subsets. The minimum
messages of each pair are the first and the second minimum
of the input set S2 = {1, 3} and with the comparison of the
maximum values of the subsets Su10 and Sl10 we define the
approximated third value. Therefore the sought three minima
are Sm = {1, 2, 3}. In this case these are the actual minima
of the input set too. As a second example, assume the set
Sin = {1, 5, 3, 2, 9, 8, 4, 7}. Following the same procedure the
result is Sm = {1, 4, 2}, so we obtain 4 as third minimum
instead of number 3.

Using this network in BP λ-min with offset decoder for the
identification of the λ-minimum values used in the check node,
the decoding performance degradation is found to be negligible
compared to the same decoding algorithm using a full sorting
operation. The comparison between these alternatives can be
seen in Fig. 6 in terms of Bit Error Rate (BER) vs. noise level
for a maximum of 50 decoding iterations. The optimal offset
may differ for the decoder using the approximated minima and
should be defined with trials.

B. Proposed approximation using seven comparisons

In Fig. 5 the Knuth diagram of the second approximation
proposed that utilizes seven comparisons is shown. This net-
work can also identify correctly the two minimum values from
the input messages but has reduced probability to correctly
identify the third, than the previous approximation. A com-
parison of the two proposed networks is shown in Table I in
terms of the probability to correctly identify minima. In this
network messages are initially compared in pairs. Afterwards
the minimum results of each comparison are again compared
in pairs thus resulting in obtaining the two minimum values
of the input set in the second stage. Finally the maximum
results of the second stage are compared to define the third

Fig. 6. Comparison of full sort with 13 comparator network (Approx1)

Fig. 7. Comparison of full sort with 7-comparator network (Approx2)

TABLE I
NETWORKS COMPARISON

Approx1 Approx2
Three minima correct 86% 57%
Two minima correct 24% 43%

approximated minimum value.
Although this approximation has a low probability to iden-

tify all actual three minimum messages, quantified at around
57%, if it is used with a BP λ-min decoding algorithm with
offset, we here find that there is only a minor degradation of
0.1 dB in the coding gain. Fig. 7 shows this comparison with
a BER vs. noise plot assuming the same code as before.

IV. PROPOSED ARCHITECTURES AND EVALUATION

Each one of the networks proposed, uses comparators de-
noted as C2−1 (Fig. 9) and C2−2 (Fig. 10). The first identifies
only the minimum value among the inputs given, while the
second one outputs both the minimum and the maximum
value. The first network is implemented as shown in Fig. 11
and uses eight C2−2 and five C2−1 comparators. The second
network requires two C2−2 and five C2−1 comparators as
shown in Fig. 12.
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Fig. 8. Comparison of full sort with Approx1 and Approx2 for 10 iterations

Fig. 9. Circuit for C2−1 Fig. 10. Circuit for C2−2

Fig. 11. Circuit that derives λ-minimum values with 13 comparisons

TABLE II
DELAY COMPARISON

Approx1 Approx2 [2]
Delay (ns) 7.17 3.75 1.24

clock cycles 1 1 8-9

The proposed architectures are quantitatively compared in
Table II in terms of latency. Furthermore, the corresponding
hardware complexity is quantified in Table III. The complexi-
ties reported refer to the Virtex-6 FPGA device XC6VLX240T,
speed grade −1. The proposed approximations substantially
reduce hardware compared to the full parallel solution. The
serial solution is of minimal complexity but it requires sub-

Fig. 12. Circuit that derives λ-minimum values with 7 comparisons

TABLE III
HARDWARE COMPLEXITY COMPARISON

Approx1 Approx2 [2]
LUTs 240 126 34
Slices 108 69 22

Registers 74 73 66
Comparators 13 7 3

stantial more clock cycles (Table II).

V. CONCLUSION

This paper proposes an approximate derivation of the λ-
minimum values entering a check node during iterative de-
coding of LDPC codes. It has been shown that the number
of comparisons required can be reduced by two times per
check node with a minor impact on decoding performance,
thus reducing the overall hardware complexity of the decoder.
Approximate processing could be a way to further reduce the
complexity of forward error correction system.
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