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Abstract—This paper presents and compares two algorithms
based on artificial neural networks (ANNs) for sound event
detection in real life audio. Both systems have been developed
and evaluated with the material provided for the third task of
the Detection and Classification of Acoustic Scenes and Events
(DCASE) 2016 challenge. For the first algorithm, we make use of
an ANN trained on different features extracted from the down-
mixed mono channel audio. Secondly, we analyse a binaural
algorithm where the same feature extraction is performed on
four different channels: the two binaural channels, the aver-
aged monaural signal and the difference between the binaural
channels. The proposed feature set comprehends, along with
mel-frequency cepstral coefficients and log-mel energies, also
activity information extracted with two different voice activity
detection (VAD) algorithms. Moreover, we will present results
obtained with two different neural architectures, namely multi-
layer perceptrons (MLPs) and recurrent neural networks. The
highest scores obtained on the DCASE 2016 evaluation dataset
are achieved by a MLP trained on binaural features and adaptive
energy VAD; they consist of an averaged error rate of 0.79 and
an averaged F1 score of 48.1%, thus marking an improvement
over the best score registered in the DCASE 2016 challenge.

I. INTRODUCTION

Automatic sound event detection (SED), also known as
acoustic event detection, is nowadays considered as one of the
most important topics in the field of computational auditory
scene analysis (CASA). Thanks to works like Bregman’s
“Auditory Scene Analysis: The Perceptual Organization of
Sound” [1] we can trace back the birth of CASA to 1994,
when the field of auditory scene analysis (ASA) was firstly
introduced in order to model humans’ sound perception.
Following this work, many other contributions were written
to describe how artificial systems can be designed to mimic
human perception; most of these works will be later collected
in Divenyi’s book [2] in 2004.

SED is defined as the task of analysing a continuous audio
signal in order to extract a description of the sound events
occurring in the audio stream. This description is commonly
expressed as a label that marks the start, the ending, and
the nature (e.g., children crying, cutlery, glass jingling) of
the occurred sound. In particular, in multi-label SED it is
assumed that more than one event can be active (and should
be detected) at a time, therefore foreseeing the overlapping of
two or more of these labels. This problem is addressable as a
“mixture problem” and it is usually not trivial to solve mainly
due to the superimposition (in the audio spectral domain) of
energies belonging to the different events and to the presence

of acoustic non-idealities such as noise and reverberation [3],
[4].

Labels extracted with a SED system usually allow us to
achieve a better insight of the considered acoustic scenario,
for instance they can be used as mid-level representation
useful in other CASA research areas. In [5], [6] authors
make use of SED for designing audio context recognition
systems, while in [7] and [8] SED is exploited for automatic
tagging and audio segmentation respectively. Moreover, SED
also found many direct applications in a variety of scenarios,
some examples being context-based indexing and retrieval in
multimedia databases [9], unobtrusive health monitoring [10],
and audio-based surveillance [11]–[13].

As we can notice from [6], [10], hidden Markov models
(HMMs) have been widely used in the literature with the pur-
pose of modelling acoustic events in a SED system. In recent
years, new approaches to SED have been proposed, marking
a distinct trend towards the use of artificial neural networks
(ANNs). An interesting comparison between computational
costs of different systems is carried out in [14] highlighting
that ANNs are able to achieve top performance at the cost
of being the most computationally expensive approach. A
brilliant example of such performance is given in [15], where
different ANNs are trained on a big video dataset and then
used for different scopes, among which we can also find SED.
For a wider overview of the most recent SED techniques the
reader can refer to the comprehensive analysis carried out by
Sharan et al. in [16].

In occasion of the Detection and Classification of Acoustic
Scenes and Events (DCASE) 2016 challenge, many novel
systems featuring recurrent neural networks (RNNs) and mul-
tilayer perceptrons (MLPs) have been proposed, even though
only one of them [17] managed to outperform the baseline
system (based on a Gaussian mixture model (GMM)). Due to
this fact, it is the authors’ opinion that there is still a lot of
space for research in approaching SED with ANNs.

In this paper we propose a system which, for the first time
(up to the authors’ knowledge), relies on a voice activity
detection (VAD) algorithm for the detection of acoustic events;
events which, after being detected, are then classified by an
ANN. During our experiments we compare different well-
established audio features, i.e., log-mel energies and mel-
frequency cepstral coefficients (MFCCs), extracted in both
monaural and binaural configuration. Moreover, we will evalu-
ate two VAD algorithms (i.e., adaptive energy (AE) and Sohn’s

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2823



Fig. 1. Block diagram of training and testing phases. At test time a VAD
algorithm is used to determine onset and offset instants of the detected events.

VAD), as well as two different ANN architectures, i.e., MLPs
and RNNs. Our aim is therefore to give a novel contribution
by presenting a robust system capable to improve the results
obtained by participants to the DCASE 2016 challenge.

Here is the outline of the paper. In Section II we introduce
the method proposed for the SED task, we therefore describe
the feature extraction processes, the proposed neural architec-
tures and the VAD algorithms we tested. In Section III we
describe the dataset and the metrics used to evaluate our sys-
tem, and, together with our experimental setup, we report our
main results. Finally, in Section IV we draw our conclusions
and highlight some possibilities for future development of new
SED systems.

II. PROPOSED METHOD

As we can see from Figure 1 it is possible to divide
the system functioning into two phases: training and testing.
During training we do not need to use any algorithm for event
detection, since onset and offset instants are already provided
in the ground truth, therefore we can simply train an ANN
to recognise the different events. At test time, on the other
hand, onset and offset instants are not given, therefore we
firstly make use of a VAD algorithm for determining them,
and secondly we feed the corresponding audio sequences to
the ANN classifier.

A. Feature representations

In order to perform the SED task with ANNs, a set of one
or more audio representations is typically extracted from the
raw audio signal, that is the feature set. Aiming to evalu-
ate the impact of binaural information on the classification
performance, we will, in the first instance, distinguish the
proposed sets between monaural and binaural feature sets. We
highlight that, for all the extracted feature sets, a frame-wise
short-time Fourier transform (STFT) is firstly applied to the
audio signal on frame windows of 40 ms with 50% overlap.
Moreover, all feature extraction processes described hereafter
have been performed with openSMILE [18], a license-free
software package developed by the Technical University of
Munich.

The first monaural set is known as log-mel spectrogram.
In this case a down-mixing of the two audio channels is
required before calculating the STFT coefficients. After the
STFT coefficients are extracted, we apply a mel conversion
of the frequency scale with a 26-bands mel-scale filter bank
and compute the logarithm of all the energies so obtained.
To complete the set, we also extract the first order delta
coefficients operating on a context window of 10 frames.
Given the log-mel coefficients and their respective deltas, this
first set is composed of 52 coefficients for each frame.

The second monaural set is composed of another set of
widely used features, that is MFCCs. Starting from the same
STFT coefficients previously obtained, we now compute the
log-mel spectrogram with a 40-bands mel-scale filter bank.
Then, we apply a discrete cosine transform (DCT) to each
energy vector and, after excluding the 0th order coefficient,
we obtain a feature vector of 20 MFCCs. In order to complete
the set, we also calculate the first and second order delta
coefficients, therefore obtaining a longer feature vector of 60
coefficients.

For the two binaural sets we extract the log-mel (or the
MFCC) features not only from the average of the two channels,
but also from their difference and the two channels separately;
this gives us a total of four channels. We decided to do so
because, for example, if an important event is predominant in
only one of the two channels, averaging them could lower
the signal-to-noise ratio, thus increasing the system failure
probability. For the first binaural set we extract the log-mel
coefficients as for the first monaural set, but, given the pres-
ence of four channels, we now have a total of 108 coefficients
for each frame. In order to avoid an excessive feature vector
dimension, in this set we avoid using the first and second order
delta coefficients. Similarly, the second binaural set is obtained
by extracting 20 MFCCs for each channel; since again we
avoid using the delta coefficients, this leads us to a total of 80
coefficients for each frame.

B. Neural networks

In this work two different ANNs architectures are tested for
the SED problem, i.e., MLPs and RNNs. The first layer of all
the examined models consists of a set of nodes to which the
audio representation (taken on a frame scale) is applied, with
the number of nodes varying from 52 to 108, depending on
the chosen feature representation.

The input is then propagated to the following three hidden
layers, composed of 512 tanh neurons (each) for MLPs and
54 rectifier neurons for RNNs. Finally, the last layer of our
networks is designed to output the class associated by the
network with the given input. To do so, this layer is composed
of a number of softmax neurons equal to the number of
possible classes, i.e., 11 if we are dealing with a “home”
scenario, and 7 in case of a “residential area” (see Table I).

C. Sound event detection and classification

At test time we want the system to detect and correctly
classify as many acoustic events as possible which occur in
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raw audio files of 30 seconds. Since no onset nor offset instants
are given, we decide to use VAD algorithms in order to detect
these instants. With this intent, two different VAD algorithms
have been tested, i.e., AE, and Sohn’s VAD.

The AE approach makes use of two energy thresholds in
order to determine the starting and ending point of an event-
active audio sequence, these thresholds being the “mean plus
variance” (MPV) and the “mean minus variance” (MMV).
These numbers are firstly calculated over all the training
dataset and then used to extract information about events
activity: whenever a frame’s energy exceeds the MPV thresh-
old an onset event is triggered. Then, the event detection
remains positive until the energy content drops below the
MMV threshold.

Sohn’s VAD [19], on the other hand, is a method based
on a statistical modelling of the audio in the time-frequency
domain, with the model parameters being estimated with a
maximum likelihood (ML) method. With this technique, the
decision regarding the event’s activity is devolved to a com-
parison between the averaged log-likelihood ratio (containing
the a-priori and a-posteriori signal-to-noise ratios) and a fixed
threshold η, with η ∈ (0, 1).

Whenever an audio file is processed by one of the two
VAD algorithms we are able to extract the starting and
ending instants between which an audio event has (supposedly)
occurred. Hence, we can feed the network with the feature
representation of the corresponding frames and finally obtain
the event classification. We remind that, in case of MLPs
trained on a frame base, we can only obtain one label for each
frame, whereas RNNs are also able to output one label for an
entire batch of frames. Due to this, we need to average all
MLP outputs so to obtain the event’s acoustic label, whereas
we decide to let RNNs output only one label for each batch
of frames corresponding to a detected event.

III. EXPERIMENTS

A. Datasets and metrics

The data we used during our experiments consists of the two
datasets provided for the third task (SED in real life audio)
of the DCASE 2016 challenge [20], both of them containing
recordings of 3-5 minutes divided into two different acoustic
scenarios: “home” and “residential area”. For each scenario
different classes were defined, and we report them in Table I.

The first dataset, called development dataset, was at first
provided in order to make all challengers able to compare
their development results. The second (evaluation) dataset,
on the other hand, is used for the final evaluation of the
submitted systems. We highlight that the ground truth for the
evaluation dataset is still not public at present time, therefore
the scores presented in this paper were calculated by the
challenge organizers on the results we submitted to them.

The development dataset consists of 10 recordings for the
“home” scenario, and 12 for the “residential area”, and for
both a four-folds cross-validation data splitting is provided
by the organizers of the challenge. While creating the cross-
validation folds, the challenge organizers requested that the

TABLE I
CLASSES AND THEIR OCCURRENCES FOR THE “HOME” AND

“RESIDENTIAL AREA” SCENARIOS FOR THE SED IN REAL LIFE AUDIO
TASK OF THE DCASE 2016 CHALLENGE.

Home Occurrences Residential area Occurrences

rustling 60 banging 23
snapping 57 bird singing 271
cupboard 40 car passing by 108
cutlery 76 children shouting 31
dishes 151 people walking 52
drawer 51 people speaking 44
glass jingling 36 wind blowing 30
object impact 250
people walking 54
washing dishes 84
water tap running 47

test subset does not contain classes unavailable in training
subsets, therefore the class distribution between the test subsets
is not assumed to be uniform.

The evaluation dataset contains 5 recordings for both the
“home” and the “residential area” scenarios each. For this
dataset no cross-validation is performed, so it is possible
to train only one system with all the development dataset
(including files previously meant for testing purpose) and then
test it with the evaluation files.

Scores used to evaluate all systems are the F1 and error
rate (ER) scores, which are used to evaluate the system over
segments of one second. Following the notation introduced
in [20], for the evaluation purpose an event can be a: true
positive (TP), if both the system and the ground truth indicate
it as active; a false positive (FP), if the system indicates it as
active, but it is not present in the ground truth; a false negative
(FN), if the system does not detect it, but it is active in the
ground truth. With this notation it is possible to define the
precision (P), the recall (R), and the F1 score of the system
as:

P =
TP

TP + FP
, R =

TP
TP + FN

, F1 =
2 · P · R
TP + FN

. (1)

Concerning the ER, we must divide all possible errors into
three categories: substitutions (S), insertions (I), and deletions
(D). A substitution occurs when the system correctly detects
an event but gives it the wrong label; moreover, we consider
insertions all those FPs which are not substitutions, whereas
we call deletions all those FNs which are not substitutions.
According to this notation we define the ER as:

ER =

∑K
k=1 S(k) +

∑K
k=1 D(k) +

∑K
k=1 I(k)∑K

k=1 N(k)
, (2)

where N(k) is the number of active events in the ground
truth, and k is the segment’s index. Finally we highlight that,
in obtaining the final score for the development dataset, we
average the four per-fold scores as described in [20].

B. Experimental setup

Concerning the network training, we initialize all weights
according to a normal distribution with zero mean and 0.1
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variance. We then train the networks following the Adam [21]
method for stochastic optimization, for which we keep the
default hyper-parameter configuration, as specified in [21] and
implemented in the Lasagne [22] Python library.

In order to prevent overfitting, for each fold we check the
network performance on the respective fold’s test set after each
training epoch. If no improvement on this set is encountered
for 60 consecutive epochs, the training is forced to an early
stop. By doing so we are able to fine-tune the network hyper-
parameters and obtain the architectures proposed in Section II.

After this phase we perform experiments on the evaluation
data, for which we use the whole development training and
test sets as training and validation data respectively. Then, at
test time, we evaluate the system on the secret challenge data.

C. Development results

As introduced in Section II, during our experiments we
tested and compared different neural architectures, VAD al-
gorithms, and feature representations. In Table II we report
the results obtained with Sohn’s VAD for 16 different system
configurations, whereas in Table III the same classifier and
feature configurations are analysed in conjunction with AE
VAD.

Table II highlights that the use of binaural audio features
always enhances the system’s performance in terms of both
F1 and ER scores. Moreover, we can also notice that MLPs
generally perform better than RNNs, in particular according
to F1 scores, where no RNN manages to achieve more than
34.4% F1 score. Finally, we report that the best system’s
configuration featuring Sohn’s VAD is a MLP trained with
binaural MFCC features, with a VAD threshold equal to 0.70.
This system manages to reach 0.88 ER and 39.8% F1 score,
both averaged on the four folds.

Table III mostly confirms what emerged from the analysis
of the previous table. Also with adaptive evergy VAD, the
use of binaural features always improves the classification
accuracy, even if differences are now less marked, with the
highest improvement in F1 scores being +2%. Moreover, it
is interesting to notice that the difference between MLPs and
RNNs accuracies is now reduced, maybe highlighting that the
difference between their classification power thins if a better
VAD algorithm leads to a better event detection. The best
performing system featuring AE VAD is again a MLP which,
with binaural log-mel features, manages to reach 0.78 ER and
43.1% F1 scores, averaged on the four folds as for the previous
results.

D. Evaluation results

In Table IV we report the main results for the most promis-
ing system configurations tested on the evaluation dataset. As
we can see, scores tend to be higher than the ones obtained on
the development dataset, especially for MLPs, highlighting the
benefit introduced by the addition in the training set of those
files previously used for testing. The expansion of the training
set can be viewed as the expansion of the “knowledge” from
which the network can learn at training time, therefore, when

TABLE II
COMPARISON OF SCORES OBTAINED ON THE DEVELOPMENT DATASET

USING DIFFERENT FEATURES, CLASSIFIERS AND SOHN’S VAD
THRESHOLDS (η). SCORES ARE AVERAGED AMONG THE FOUR

CROSS-VALIDATION FOLDS.

Features η Classifier ER F1 (%)

Monaural log-mel 0.98 MLP 0.93 34.6
Binaural log-mel 0.98 MLP 0.89 38.6

Monaural log-mel 0.70 MLP 0.90 35.4
Binaural log-mel 0.70 MLP 0.89 39.4

Monaural MFCC 0.98 MLP 0.92 35.7
Binaural MFCC 0.98 MLP 0.88 39.6

Monaural MFCC 0.70 MLP 0.91 36.2
Binaural MFCC 0.70 MLP 0.88 39.8

Monaural log-mel 0.98 RNN 0.91 29.6
Binaural log-mel 0.98 RNN 0.88 35.6

Monaural log-mel 0.70 RNN 0.95 28.2
Binaural log-mel 0.70 RNN 0.88 34.4

Monaural MFCC 0.98 RNN 0.98 30.5
Binaural MFCC 0.98 RNN 0.88 34.1

Monaural MFCC 0.70 RNN 0.91 31.2
Binaural MFCC 0.70 RNN 0.88 31.0

TABLE III
COMPARISON OF SCORES OBTAINED ON THE DEVELOPMENT DATASET

USING DIFFERENT FEATURES, CLASSIFIERS AND AE VAD. SCORES ARE
AVERAGED AMONG THE FOUR CROSS-VALIDATION FOLDS.

Features Classifier ER F1 (%)

Monaural log-mel MLP 0.78 41.2
Binaural log-mel MLP 0.78 43.1

Monaural MFCC MLP 0.81 40.1
Binaural MFCC MLP 0.82 42.1

Monaural log-mel RNN 0.85 41.2
Binaural log-mel RNN 0.82 43.1

Monaural MFCC RNN 0.92 40.7
Binaural MFCC RNN 0.89 41.0

TABLE IV
COMPARISON OF SCORES OBTAINED ON THE EVALUATION DATASET

USING DIFFERENT FEATURES, CLASSIFIERS AND VAD ALGORITHMS.

Features VAD Classifier ER F1 (%)

Monaural log-mel Sohn (η = 0.70) MLP 0.80 40.2
Binaural log-mel Sohn (η = 0.70) MLP 0.78 46.5

Monaural MFCC AE MLP 0.79 45.1
Binaural MFCC AE MLP 0.78 48.1

Monaural MFCC AE RNN 0.82 41.0
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TABLE V
COMPARISON BETWEEN THE PROPOSED SYSTEM AND THE THREE (OUT
OF 17) BEST PERFORMING DCASE 2016 SYSTEMS PROPOSED FOR SED

IN REAL LIFE AUDIO.

Features VAD Classifier ER F1 (%)

Binaural log-mel AE MLP 0.79 48.1

Binaural mel energy - RNN [17] 0.81 47.8
Binaural mel energy - GMM [20] 0.88 23.7
Binaural mel energy + TDOA - RNN [17] 0.89 34.3

this happens, it is expectable to reach a better generalization
performance. This behaviour is confirmed, the best performing
configuration manages to achieve a 0.79 ER and 48.1% F1
scores, and it consists of a MLP classifier trained on binaural
MFCC features.

Table V compares our best system to the three best per-
forming ones proposed for the third task of the DCASE 2016
challenge. The first and the third ranks were achieved by
Adavanne et al., which made use of RNN-LSTM architectures
trained on spatial and harmonic features [17] extracted from
the two binaural channels. On the other hand, the second best
system is the baseline proposed in [20], based on a GMM
modelling of each acoustic event, plus one for the absence of
sound events, which was trained with the non-labelled frame’s
features (MFCCs and their delta/delta-deltas were used). As
we can see from the table, the proposed system manages to
improve the F1 score by 0.3% while reducing the error rate
by 0.02.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we proposed and evaluated a system for
SED in real life audio. We compared different audio features,
extracted in both monaural and binaural configurations, with
which we trained different neural network classifiers. More-
over, we tested two different VAD algorithms for detecting
sound activities to be classified by the proposed networks at
test time. The proposed best performing system achieves an
improvement on the winner of the third task in the DCASE
2016 challenge, thus highlighting the competitiveness of the
proposed approach. Finally, given the improvement carried by
the use of binaural features, we believe that future work should
address the development of a binaural algorithm using one or
more networks for each channel and a decision function for a
decision fusion stage.
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