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Abstract—Gesture recognition has multiple applications in 

medical and engineering fields. The problem of hand gesture 

recognition consists of identifying, at any moment, a given 

gesture performed by the hand. In this work, we propose a new 

model for hand gesture recognition in real time. The input of 

this model is the surface electromyography measured by the 

commercial sensor the Myo armband placed on the forearm. 

The output is the label of the gesture executed by the user at 

any time. The proposed model is based on the k-nearest neigh-

bor and dynamic time warping algorithms. This model can 

learn to recognize any gesture of the hand. To evaluate the 

performance of our model, we measured and compared its 

accuracy at recognizing 5 classes of gestures to the accuracy of 

the proprietary system of the Myo armband. As a result of this 

evaluation, we determined that our model performs better 

(86% accurate) than the Myo system (83%).  

Keywords—Hand gesture recogntion; EMG; machine 

learning; k-nearest neighbor; dynamic time warping algorithm 

I.  INTRODUCTION 

Electromyography (EMG) is a measure of the electrical 
activity in the skeletal muscles of the human body [1-3]. The 
anatomy and physiology of a muscle can be modeled as fol-
lows. A muscle is composed of a set of overlapping motor 
units. A motor unit is a set of many fibers (i.e., muscular 
cells) innervated by a single motor neuron. The ends of the 
fibers are connected to the tendons. When a muscle is at rest, 
each fiber has an electric potential difference of approximate-
ly -80 mV between its extracellular and intracellular envi-
ronments. On one end, motor neurons are connected to the 
fibers through the so-called neuromuscular junction; whereas, 
on the other end, they are connected to the spinal cord. When 
a motor neuron fires, two intracellular action potentials (i.e., 
waves) propagate along each fiber from the neuromuscular 
junction to the tendons with constant speed and without at-
tenuation. These waves result from the depolarization and 
repolarization of a fiber. Thus, the motor units of a muscle 
produce force and movement, both in reflex and voluntary 
contractions (i.e., muscular activities) [2-7].  

The addition of the impulse responses of the action poten-
tials from all the fibers of a motor unit produces the so-called 
motor unit action potential (MUAP). The EMG produced by 
the activity of a skeletal muscle can be modeled as an inter-

ference pattern (i.e., linear summation) between several 
MUAP trains. Thus, the contribution of each motor unit to the 
EMG can barely be recognized. The attributes (i.e., amplitude 
and spectrum) of an EMG depend on several factors includ-
ing thickness and temperature of the skin, thickness of the fat 
between the muscle and the skin, velocity of the blood flow, 
and location of the sensors. Factors like fatigue, aging, and 
neuromuscular diseases degrade muscle performance as well 
as EMG patterns. More details about electric models of mus-
cles and EMG signals can be found at [2-7]. 

Depending on the type of sensors used, there are two 
types of EMG: surface and intramuscular. In surface EMG, 
non-invasive surface sensors are placed on the skin to record 
the electrical activity of the muscles under it [2, 3]. In intra-
muscular EMG, an invasive sensor (i.e., needle) is introduced 
into the muscle. In this work, we use surface EMG; hence, 
from here on we will use EMG to mean only surface EMG.  

Numerous medical and engineering applications for EMG 
exist. In the medical field, EMGs are used to monitor what is 
occurring physiologically with respect to the nerves and the 
muscles in real time [2]. In engineering, applications of EMG 
include the development of prostheses, rehabilitation devices, 
and human machine interaction systems [3, 5, 7]. In most of 
these applications, gesture recognition plays an important 
role. Hand gesture recognition is the problem of identifying 
which gesture is performed by the hand of a given user at any 
moment. Hand gesture recognition has many applications, 
including human-machine interfaces, sign language transla-
tion, and the control of human prostheses [8-10]. 

A gesture recognition system based on EMG can be di-
vided into 3 stages: data acquisition, feature extraction, and 
classification. Data are generally acquired in 3 ways: from 
non-commercial surface sensors only [8, 11-15]; from com-
mercial sensors only, such as the Myo armband [9]; and from 
commercial or non-commercial sensors combined with data 
from variables other than EMG [8, 10]. 

In the feature extraction stage, different techniques have 
been applied in time, frequency, and time-frequency domains 
to obtain meaningful information for each gesture class to be 
recognized. The most common features obtained in the time 
domain are the mean absolute value, nth-order autoregressive 
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coefficients, zero crossing, length of the signal, sign of slope 
changes, modified mean absolute value, simple square inte-
gral, root-mean square value, sample mean and variance, log 
detector, average amplitude change, maximum fractal length, 
EMG integral, Willison amplitude, histogram, cepstral coeffi-
cients, and sample entropy [5, 7-16]. The most common fea-
tures obtained in the frequency domain are the power spec-
trum, mean and median frequencies, frequency histogram, 
mean power, and spectral moments [5, 7, 11, 13, 16]. In the 
time-frequency domain, the most common technique used to 
analyze the EMG is the wavelet transform [5, 7].   

The classification stage consists of determining to which 
class the feature vector extracted from a EMG belongs. The 
most frequent models used for classification are support vec-
tor machines [10-12] and neural networks [14-16]. A combi-
nation of decision trees, k-means clustering and hidden Mar-
kov models is used in [8]. A combination of support vector 
machines and hidden Markov models is used in [15]. 

For several applications, gesture recognition systems are 
required to function in real time. The accuracy of these sys-
tems should be comparable to those in offline systems. For a 
gesture recognition system to function in real-time, it has to 
recognize a gesture in less than 300 ms [17]. This is equiva-
lent to a minimum of 3 gestures/s. Additionally, these sys-
tems usually run using limited computational resources. The-
se requirements impose a constraint in the complexity of a 
recognition model. Therefore, the challenge is to design a 
real-time gesture recognition system that simultaneously has 
low computational cost and exhibits good performance.  

Many publications propose offline models with high 
accuracy, e.g., 90% [17], 96.7% [14], and 98% [13], but only 
few propose real-time models. For example, in [10] authors 
propose a real-time model with a recognition accuracy of 
82.3%. Therefore, the problem of real-time hand gesture 
recognition is still open for new approaches.  

In this work, we propose a new model for real-time hand 
gesture recognition based on forearm EMGs measured by the 
commercial surface sensor the Myo armband. In section 2, 
we describe the main characteristics of the Myo armband and 
the structure of our proposed model. In section 3, we describe 
the experiments and then present, analyze, and compare the 
results of the performance of both the proprietary recognition 
system of the Myo armband and the proposed model. Finally, 
in section 4, we draw some conclusions from this work. 

II.  MATERIALS AND METHODS 

In this section, we describe the main characteristics of the 

Myo armband and then present the structure of the proposed 
model. 

A. Materials 

In this work, we used the commercial sensor called Myo 
armband. We chose this sensor because of its relative low 
cost, small size and weight, and software development kit 
(SDK) capabilities. The SDK allowed us to communicate 
our recognition model with the Myo armband very easily. 
The Myo is composed of 8 EMG surface dry sensors. These 
sensors measure the electrical activity of the muscles of the 

forearm at a sampling rate of 200 Hz (Fig. 1a) with 8 bits of 
resolution for each sensor. The forearm muscles are respon-
sible for the movements of the different parts of the hand 
(Fig. 1b). The Myo transmits its measurements to the com-
puter via Bluetooth. Additionally, the Myo contains an iner-
tial measurement unit (IMU) with 9 degrees of freedom 
(accelerometer, gyroscope, and orientation in the x, y, and z 
axes). Finally, the Myo comes with a proprietary system for 
recognizing 5 gestures of the hand: pinch, fist, open, wave 
in, and wave out (Fig. 1c). 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 1. Myo armband: (a) location of the surface EMG sensors on the 

device, (b) placement of the armband on the forearm (the sensor with the 

blue logo goes on the posterior part of the forearm), and (c) gestures that are 

recognized by the propietary software of the Myo. 

B. Methods 

This section describes the proposed model for real-time 
gesture recognition using the EMG signals and measured by 
the Myo armband. 

1) Modeling and acquisition of EMGs: The intracellular 
action potentials that form an EMG occur at random 
intervals [1-7]. Therefore, at any moment, the EMG may be 
either positive or negative. Based on this context, an EMG 
measured during the contraction of a muscle of the forearm 
can be modeled by 2 zero-mean Gaussian processes [18-19]. 

One process is S(t,)(0,signal(t),) modulated by the 

muscle activity. The other process is an independent additive 

noise N(t,)(0,noise,). In both cases, t and  denote the 

instant of time and the trial number (i.e., measurement 
number), respectively, of the recorded EMG. The noise is 
assumed to be strict-sense stationary; whereas, the EMG is 

non-stationary (i.e., because signal changes with time) and 

independent between different EMG realizations [20]. 

For a given discrete instant n and trial number +, 

the Myo EMG sensors return a discrete, normalized vector 

E(n,) = (E1(n,),…, E8(n,))T[-1, 1]8. The component 

Ei(n,)E(n,) contains the measurement returned by the ith 

Myo EMG sensor at instant n in trial . For simplicity of 

notation and assuming we focus on the analysis of the sam-
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ples of a fixed , we can write E(n) = (E1(n),…, E8(n))T. 

Given the assumed nature of EMGs, the ith component Ei(n) 
of the vector E(n) is equal to Ei(n) = Si(n) + Ni(n), where Si(n) 
and Ni(n) are discretized, normalized values obtained from 
the modulated Gaussian and noise processes, respectively, 
with i = 1, 2,…, 8. 

For obtaining feature vectors for the classification pro-
cess, we define a window W through which we observe |W| = 
200 samples from the measured EMG. Thus, at an instant n, 

we obtain the signal Sn = (E(n - 199),…, E(n))[-1, 1]8200, 

where E(n - i) = (E1(n - i), …, E8(n - i))T and i = 0, 1, …, 199. 
Note that 200 samples are obtained by observing the EMG 
through a window of 1 s at a sample rate of 200 Hz. The 
distance between 2 consecutive observations (i.e., a stride) is 
50 samples (or 0.25 s at a rate of 200 Hz). The window length 
|W| and the stride were determined experimentally. 

2) Preprocessing: We first rectify the signal Sn to obtain 
abs[Sn]. The signal abs[Sn] consists of the absolute values of 

each element of Sn. For a given vector E(n - i)Sn, we define 

abs[E(n - i)] = (abs[E1(n - i)],…, abs[E8(n - i)])T, with i = 0, 
1,…, 199. Rectification avoids a situation in which each 
channel of the signal Sn averages to zero. Then, we apply a 

digital low-pass Butterworth filter  to the signal abs[Sn]. 

This filtering reduces the noise and smooths each channel 

(i.e., row) of abs[Sn]. The filter  has a 4th order with a 

cutoff frequency of 5 Hz (i.e., normalized frequency of 

0.05 rad/sample). As a result of filtering, we obtain the 

signal [abs[Sn]]. We chose the Butterworth filter because it 

has fewer design parameters than the Chebyshev and elliptic 
IIR filters [20]. Additionally, we preferred IIR to FIR digital 
filters because, to achieve a similar sharpness, IIR filters are 
usually less computationally expensive than FIR. 

3)  Feature extraction: Here, we define a feature matrix 

X = (X1;…; X8)8200, where its ith row contains the 

feature vector Xi = [abs[Ei(n - 199),…, Ei(n - 1), Ei(n)]], 

with i = 1, 2,…, 8. This means that the vector XiX contains 

the 200 samples of the ith channel from the filtered and 

rectified EMG [abs[Sn]]. 

4) Classification: The feature matrix X is labeled 

with an element (X) from the set  = {0, 1, …, c - 1}, 

where c denotes the number of classes for the classification. 
Here, the label 0 represents the class “no gesture” or “rest.” 

The space of feature matrices is denoted by 8200. We 

define the classifier :    in such a way that  

(X) =
{0,.., -1}

arg max ( | )
y c

Y y


 X ,                    (1) 

subject to the condition that the probability that maximizes 
equation (1) must be equal to or greater than a threshold 

[0, 1] y  0. Otherwise, we define (X) = 0, which 

means that the classifier  assigns X to the class “no ges-

ture.” 

For estimating the conditional probabilities (Y|X) with 

Y, we use the k-nearest neighbor (kNN) rule [21-23]. kNN 

estimates the conditional probabilities (Y|X) based on the 

relative frequency of the k closest neighbors to X. To find 

the k closest neighbors to X, we need a training set  and a 

distance function. The set  = {(Z(1),Y(1)),…, (Z(N),Y(N))} is 

composed of N training pairs (Z(i),Y(i)), where Y(i) is the label 
with which the feature matrix Z(i)

 was observed. We denote 

the feature matrices of  with Z instead of X because for the 

acquisition of Z, we used a window length of 400 samples 
(i.e., 2 s of recording) instead of 200 samples. This window 
length was chosen so that the user had enough time to record 
each gesture during training. For the distance function, we 
used the dynamic time warping (DTW) algorithm with the 
Manhattan distance [24]. The inputs of the DTW algorithm 

are the feature vectors XiX and Zi
(j)Z

(j). The result is a 

real value dtw(Xi,Zi
(j)) representing the distance of the opti-

mal alignment between the sequences Xi and Zi
(j), with i = 1, 

2, …, 8 and j = 1, 2,…, N. We define the distance between 
the feature matrices X and Z

(j) to be the sum of the DTW 
distances dtw(Xi,Zi

(j)) of their rows, with i = 1, 2,…, 8. 

5) Post-processing: In this last stage, the model returns 

“no gesture” if the current classification label (Xn) is the 

same as the previous one (Xn-50). Otherwise, if the 

classifications are different, the label (Xn) is returned. The 

matrices Xn and Xn-50 contain the feature vectors extracted 
at the instants n and n - 50, respectively, with a stride of 50 
samples. This post-processing helps us deal with the 
overlapping window classifications of the same gesture. 

III. RESULTS AND ANALYSIS 

In this section, we present and analyze the results from the 
test applied to the proposed model. We also present the re-
sults from the proprietary recognition system of the Myo 
armband. Based on these two results, we make comparisons. 

A. Performance of the Myo recognition system 

Before using the recognition system of the Myo armband, 
a user needs to synchronize the system by performing a wave 
out. By default, this system recognizes 5 classes of gestures: 
pinch, fist, open, wave in, and wave out. The performance of 
this system was evaluated based on the results of an experi-
ment with 10 people. In this experiment, each person was 
guided with a video containing a sequence of 150 gestures. 
Each gesture lasted around 5 s. The sequence presented in the 
video consists of 30 repetitions of the basic sequence: fist, 
open, wave in, and wave out. The order of the gestures in this 
basic sequence was defined randomly. In the last part of the 
video, users executed the 30 remaining pinches to complete 
the 150 gestures from the test. The pinch was put at the end 
because this gesture deactivates the recognition system of the 
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Myo. Before the test, each person had time both to get used to 
the Myo and to practice the gestures for the test. All users 
wore the Myo on their right arm. Additionally, during the 
experiment, users had a visual feedback of the gestures re-
turned by the Myo recognition system. 

In Table 1, we show the confusion matrix with the results 
obtained from this experiment. In this table, we included the 

class “no gesture.” This class represents all the gestures that 

were not detected by the Myo system. The overall recogni-

tion accuracy of the Myo was just over 83%. 

TABLE I.  CONFUSION MATRIX OF THE MYO ARMBAND 

 Actual Gesture 
%ACCURACY 

% ERROR 

P
r
e
d

ic
ti

o
n

 

 
FIST OPEN WAVE IN WAVE OUT PINCH 

FIST 
260 

17.33% 

17 

1.13% 

34 

2.27% 

1 

0.07% 

3 

0.2% 

82.5% 

17.5% 

OPEN 
13 

0.87% 

261 

17.4% 

12 

0.08% 

6 

0.4% 

1 

0.07% 

89.1% 

10.9% 

WAVE IN 
1 

0.07% 

0 

0% 

211 

14.07% 

2 

0.13% 

0 

0% 

98.6% 

1.4% 

WAVE OUT 
0 

0% 

0 

0% 

0 

0% 

255 

17% 

0 

0% 

100% 

0% 

PINCH 
4 

0.27% 

1 

0.07% 

1 

0.07% 

25 

1.67% 

259 

17.27% 

89.3% 

10.7% 

NO GESTURE 
22 

1.47% 

21 

1.4% 

42 

2.8% 

11 

0.73% 

37 

2.47% 

0% 

100% 

%ACCURACY 

% ERROR 
86.67% 

13.33% 

87% 

13% 

70.33% 

29.67% 

85% 

15% 

86.3% 

13.7% 

83.07% 

16.93% 

 

B. Performance of the proposed model 

Each time a person wants to use the proposed model, it 
requires training. For this experiment, each user had to train 
the proposed model by executing 5 repetitions of the follow-
ing 6 gestures: pinch, fist, open, wave in, wave out, and no 
gesture. The data for “no gesture” were acquired by asking 
the user to put his/her arm at rest. Each of these 30 gestures 

was recorded for 2 s, creating thus a training set  composed 

of N = 30 examples for each user. The number of training 
examples N was selected as a tradeoff between a short train-
ing time and enough training examples to avoid overfitting 
[21-24]. We used k = 5 neighbors for the kNN algorithm and 

a probability threshold of  = 4/5 = 0.8. For optimal perfor-

mance of the kNN algorithm, the value of k was chosen 
based on the rule k = ceil[log2(N)], where ceil rounds toward 

+. We defined  = 0.8 to reduce the rate of false positives; 

this value of  implies that our model returns a label from 

{pinch, fist, open, wave in, wave out} only if at least 4 out of 
the 5 labels of the closest neighbors of the feature matrix to 
be classified are equal. Otherwise, it returns “no gesture.” 

To evaluate the performance of the proposed model, 
again we carried out an experiment with 10 people. For this 
experiment, after training the model as indicated above, each 
person was asked to perform 30 repetitions for each class to 
be recognized. Each repetition was recorded for around 5 s. 
For testing, users were not asked to execute the class “no 
gesture.” Moreover, unlike in the test of the Myo system, in 
this experiment users did not have any feedback of the 
recognitions returned by our model. Because of the way our 
model is implemented (section II.B), for 5 s of recorded 
EMG, our model returns approximately 17 labels. The 
recognition was considered successful if, out of the labels 
returned, only one corresponded to the actual gesture and the 

labels remaining were “no gesture.” Otherwise, the recogni-
tion was considered erroneous. For errors, if the algorithm 
returned 2 or more labels other than “no gesture,” the error 
was defined as the first label different from “no gesture.” In 
Table 2, we show the confusion matrix from this experiment. 
The overall accuracy of the proposed model is 86%. 

TABLE II.  CONFUSION MATRIX OF THE PROPOSED MODEL 

 Actual Gesture  
%ACCURACY 

% ERROR 

P
r
e
d

ic
ti

o
n

 

 
FIST OPEN WAVE IN WAVE OUT PINCH 

FIST 
252 

16.8% 

1 

0.07% 

1 

0.07% 

0 

0% 

0 

0% 

99.2% 

0.8% 

OPEN 
17 

1.13% 

250 

16.67% 

3 

0.2% 

5 

0.33% 

6 

0.4% 

89.0% 

11.0% 

WAVE IN 
5 

0.33% 

1 

0.07% 

278 

18.53% 

0 

0% 

4 

0.27% 

96.5% 

3.5% 

WAVE OUT 
1 

0.07% 

0 

0% 

4 

0.27% 

255 

17% 

0 

0% 

98.1% 

1.9% 

PINCH 
12 

0.8% 

16 

1.07% 

5 

0.33% 

4 

0.27% 

255 

17% 

87.3% 

12.7% 

NO 

GESTURE 

13 

0.87% 

32 

2.13% 

9 

0.6% 

36 

2.4% 

35 

2.33% 

0% 

100% 

%ACCURACY 
% ERROR 

84.0% 

16.0% 

83.33% 

16.67% 

92.67% 

7.33% 

85.0% 

15.0% 

85.0% 

15.0% 

86.0% 

14.0% 

 

C. Comparison of performance of Myo and proposed model 

Comparing the results in Tables 1 and 2, we see that the 
highest and lowest sensitivities in the proposed model occur 
in the classes “wave in” (92.7%) and “open” (83.3%). For 
the Myo system, the highest and lowest sensitivities were in 
the classes “open” (87.0%) and “wave in” (70.3%). Addi-
tionally, for the proposed model, the classes “fist” and 
“pinch” have the highest (99.2%) and lowest (87.3%) preci-
sion rates, respectively. Meanwhile, for the Myo system, the 
highest and lowest precision occurs for the classes “wave 
out” (100%) and “fist” (82.5%). The average precision of the 
proposed vs. the Myo system is 94.02% and 91.9%, respec-
tively. This comparison shows that the proposed model is 
decidedly more accurate than the Myo’s proprietary system, 
especially taking into account that users did not have any 
feedback to correct their gestures while testing our model. 

Because the structure of the recognition system of the 
Myo is not publicly available, understanding why our model 
performs better than the Myo is very difficult. However, 
during our experiments, we observed some differences in the 
EMG shapes when different people performed the same 
gesture. Therefore, we predict that training a recognition 
model for each user, as in our model, performs better than 
training a general model for all users. By training for each 
user, a recognition model can adapt its behavior better to the 
particular attributes of each user’s EMG. 

Regarding the computational cost of the proposed model, 
Fig. 2 shows a histogram of the time of processing window 
observations composed of 100 samples each. All the tests 
were carried out on a desktop computer with an Intel® 
Core™ i7-3770S processor and 4GB of RAM. In this histo-
gram, the width of each bin is 3.3 ms. In Fig. 2, we see that 
most of the histogram of the processing time of each window 
observation is below 0.25 s (red line); 0.25 s is the time lapse 
we defined between 2 consecutive observations of the EMG. 
Therefore, our system is able to recognize, on average, 4 
gestures/s. The number of classifications/s of our model is 
higher than the minimum recommended number of recogni-
tions for a system to function in real time. 
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Fig. 2. Histogram of the processing time of each window 
observation composed of 200 samples for the proposed model. 

IV. CONCLUDING REMARKS 

In this paper, we have presented a new model for real-
time hand gesture recognition based on the EMG of the 
forearm. These signals are acquired using the commercial 
surface sensor called the Myo armband, which transmits the 
data via Bluetooth to the computer. The proposed model is 
composed of 5 stages: signal acquisition, preprocessing, 
feature extraction, classification, and post-processing. For 
the classification stage, we used the k-nearest neighbor rule 
together with the dynamic time warping algorithm. 

The proposed model can learn to recognize any hand ges-
ture through a training process in which the user performs 
the gestures to be recognized several times. We compared 
the performance of the proposed model with that of the pro-
prietary recognition system of the Myo armband. For this 
comparison, we analyzed the 5 classes of gestures that the 
Myo armband system recognizes by default: pinch, fist, 
open, wave in, and wave out. As result of this comparison, 
we determined that our model has better recognition accura-
cy (86%) than the Myo system (83%). Additionally, we 
estimated that on average, our system can perform 4 recogni-
tions/s (i.e., real-time recognition) using a desktop computer 
with an Intel® Core™ i7-3770S processor and 4GB of 
RAM. 

Future work includes testing the proposed model capacity 
to recognize gestures other than the 5 classes that the Myo 
system recognizes by default. Additionally, different feature 
extraction techniques as well as other parametric and non-
parametric classification models need to be tested. 
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