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Abstract—Voice Activity Detection (VAD) plays an important
role in current technological applications, such as wireless
communications and speech recognition. In this paper, we
address the VAD task through machine learning by using
a discriminative restricted Boltzmann machine (DRBM). We
extend the conventional DRBM to deal with continuous-valued
data and employ feature vectors based either on mel-frequency
cepstral coefficients or on filter-bank energies. The resulting
detector slightly outperforms the VAD often used as benchmark
for detector comparison. Results also indicate that DRBM is
able to deal with strongly correlated feature vectors.

I. INTRODUCTION

Voice activity detection has been a topic of intense research

in the signal processing community for many years (see

e.g. [1]–[15]). In telephony systems, voice activity detectors

(VADs) enable a significant reduction in the bandwidth used

for speech communications. They are also used in systems

for noise reduction, where the noise spectrum is estimated

during the absence of speech [1].

Conventional techniques for voice activity detection use

measurements and/or statistical models to emphasize dif-

ferences between presence and absence of speech [2]–[12].

Some of the most used measurements are: energy, param-

eters of linear predictive coding [2], zero-crossing rate [3],

periodicity [4], cepstral features [5], formant configurations

[6], and spectral entropy [7]. Three VADs based on some

of these techniques should be emphasized: G.729-B [16],

G.729-II which is an improved version of the first [17], and

the long-term spectral divergence (LTSD) [1]. G.729-B/II

were adopted in industry as part of a speech codec and

uses energy measurements, zero-crossing rate, and parameters

of linear predictive coding. LTSD compares the long-term

spectral envelope of the signal with an estimate of the noise

spectrum and is often used as a benchmark for other detectors

due to its good performance for a wide range of signal-to-

noise ratio (SNR) [1].

Recently, VADs based on machine-learning techniques

have attracted attention in the literature (see e.g., [13]–[15]

and their references). Some approaches use measurements of

the conventional techniques as inputs of the classifier. This

is the case of the scheme proposed in [13], where a support

vector machine (SVM) was fed with measurements of G.729-

B to improve the performance of the conventional VAD.

In some other approaches, the learning mechanism is fed

with measurements that represent the sound, as mel-frequency

cepstral coefficients [14]. In this case, besides taking the final

decision, the classifier is also responsible for discovering the

features that should be used to decide between presence or

absence of speech. Independently of the approach, the use of

learning mechanisms enables the addition of new information

to the detector. In [15], for instance, feature vectors with a

wide range of measurements were used as inputs of a deep

belief network – deep neural network (DBN-DNN), which

allowed this scheme to merge different types of information

and obtain a powerful detector.

In machine learning, restricted Boltzmann machines

(RBMs) have been successfully used for reproducing discrete

probability distributions [18], [19] and also for classification

[20]. Due to the efficient algorithm proposed by Hinton in

[21], they have played an important role in the training

of deep belief networks (DBNs) [22], [23]. Despite their

good performance in nonlinear classification problems (e.g.,

character recognition) [20], RBMs have been little exploited

as a stand-alone solution to classification problems when

compared to other standard classifiers as neural networks and

SVMs. Furthermore, to the best of our knowledged, RBMs

were used for classification only with binary data.

In this paper, we propose a VAD based on a discriminative

restricted Boltzmann machine (DRBM). We focus on the

discriminative training since this modality of RBM training

is more suitable to achieve good classification models [20].

Since DRBM works with binary data in its original form,

we propose a variant of its model, named Gauss-Bernoulli

DRBM, in order to enable continuous-valued data. By means

of simulations, we verify that the proposed Gauss-Bernoulli

DRBM with a small number of hidden units is able to obtain

a performance slightly superior compared to LTSD in terms

of area under the receiver operating characteristic (ROC)

curve, accuracy, and computational cost. Furthermore, the

proposed detector is compared with G.729-B/II. The paper

is organized as follows. Section II revisits the the RBM

model that includes a classifier layer and proposed the Gauss-

Bernoulli DRBM model that deals with continuous-values

data. In Section III, we present experimental configuration

issues and the simulation results. Finally, Section IV closes

the paper with conclusions and perspectives for future works.

II. GAUSS-BERNOULLI DRBM

An RBM is a stochastic neural network that is able to

generate data according to a probability distribution [18].

Fig. 1 sketches an RBM, where circles represent its units.

The rectangle on the top represents the layer of hidden units.

The rectangles on the bottom represent layers of visible units:

on the right, we have the input layer and on the left, the

classification layer that contains the corresponding label [20].
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The units of an RBM are modeled as random variables with

the following joint probability distribution

P (y,x,h) =
exp(−E(y,x,h))

Z
, (1)

where x= [x1, . . . , xnd
]T and h= [h1, . . . , hnh

]T are state

vectors of the input and hidden variables, respectively, y ∈
{1, . . . , nc} is the label (class) corresponding to the input

vector, E(y,x,h) is known as global energy function, and Z
is a scalar used to guarantee that the sum of P (y,x,h) over

its domain is equal to one.

...
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Figure 1. Diagram of an RBM including a classification layer.

Different definitions for E(y,x,h) lead to different models.

In this work, the definition of [20] was changed in order to

ensure that the visible variables are conditionally Gaussian,

i.e.,

E(y,x,h) =−

nd
∑

i=1

nh
∑

j=1

hjwji

xi

σ2
i

−

nh
∑

j=1

bjhj −

nc
∑

k=1

dkδk,y

(2)

−

nc
∑

k=1

nh
∑

j=1

hjujkδk,y +

nd
∑

i=1

(xi − ci)
2

2σ2
i

.

This definition for E(y,x,h) was inspired by the one pro-

posed in [24], where RBMs were modeled without a clas-

sification layer. In (2), δr,s represents the Kronecker delta

and wji, bj , ci, σ
2
i , dk, ujk, with i=1, . . . , nd, j=1, . . . , nh,

k=1, . . . , nc, are parameters of the model. We consider that

the hidden units can assume individually values in the set

{0, 1}. Given y and x, it can be shown that the vector of

hidden variables is jointly independent and its entries present

a Bernoulli distribution with success probability

P (hj=1|y,x) = ϕ

(

bj + ujy +

nd
∑

i=1

wji

xi

σ2
i

)

, (3)

where ϕ(z) = 1/(1 + e−z) is the sigmoid function.

RBMs are commonly trained by using the contrastive

divergence (CD) algorithm proposed in [21] to minimize the

following generative loss function

Lgen = −

nt
∑

t=1

logP (y(t),x(t)), (4)

where nt is the number of training samples and (x(t), y(t))
represents the tth training sample, constituted by the input

x
(t) and its respective label (class) y(t). The efficient search

for the minima of this function envolves the calculus of its

gradient with respect to the parameters of the model, which is

intractable. This problem was solved by considering certain

approximations, which led to the CD algorithm [21].

The model of a DRBM is identical to that of Figure 1.

The difference is that a DRBM is trained to minimize the

following discriminative loss function

Ldisc = −

nt
∑

t=1

logP (y(t)|x(t)). (5)

Using the definition of (2), we can show that

P (y|x) =
exp

(

dy +
∑nh

j=1 ζ
(

bj + ujy +
∑nd

i=1 wji
xi

σ2
i

))

∑nc

y∗=1 exp
(

dy∗ +
∑nh

j=1 ζ
(

bj + ujy∗ +
∑nd

i=1 wji
xi

σ2
i

)) ,

(6)

with ζ(z) = ln(1 + ez). This equation has the same form

to that obtained for binary input variables. As observed in

[20], P (y|x) takes time O(nhnd + nhnc) to be computed.

Furthermore, the gradient of P (y|x) can be exactly computed

in an efficient manner. Therefore, the gradient of Ldisc

can also be exactly computed. Using the stochastic gradient

method, we obtain the update rules for the DRBM parameters,

summarized in Table I. This table does not contain rules for

updating neither ci nor σ2
i , since ci are not relevant for the

discriminative training and the learning of σ2
i can be avoided

by making a normalization in the variance of the input data.

In practical terms, DRBMs usually achieve good classifica-

tion results with small dimension models when compared to

RBMs. Furthermore, since the gradient of the discriminative

loss function is exact, the training algorithm enables higher

learning rates with no divergence.

III. EXPERIMENTAL ANALYSIS

All the experiments shown in this section were performed

by using MATLAB 7.11, running in Windows 7. The used

processor was an Intel Xeon with 6 physical kernels operating

over 2,4 GHz and 32 GB of RAM.

Table I
UPDATE RULES FOR DRBM PARAMETERS.

Definitions:

∆bj =P (hj=1|y(t),x(t))−

nc
∑

y∗=1

P (y∗|x(t))P (hj=1|y∗,x(t))

∆dk = δ
k,y(t) − P (y=k|x(t))

∆wji = ∆bj

(

x
(t)
i

σ2
i

)

∆ujk = ∆dkP (hj=1|y=k,x(t))

Note: Functions P (hj=1|y,x) and P (y|x) employed in above definitions
are presented in (3) and (6), respectively.

Update rules: According to the stochastic gradient method, the update of
φ can be performed as φ ← φ+ λ∆φ, where λ is the learning rate of the
algorithm.

Test corpus: We used a modified version of the NOIZEUS

speech corpus [25], which was chosen for three reasons:

firstly, this corpus is constituted by 30 phrases making a total

of 80 segundos, which makes its manual labeling feasible;

secondly, the phrases in the corpus contain all the phonemes

of English; and, finally, it is available for free.

The audio in each file contained in the corpus was man-

ually labeled in order to indicate the ranges with speech,

considering voiced and unvoiced sounds. According to this
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labeling, the percentage of voice activity of each file varies

in the interval [64.9%, 91.2%], which represents an average

of 83,4% of presence of speech. Therefore, this information

base is unbalanced since it presents more positive examples

(presence of speech) than negative examples (absence of

speech). Due to this unbalance, the detectors G.729-B/II

and LTSD could not be properly evaluated in the absence

of speech. On the other hand, for machine-learning-based

detectors, the training with this unbalanced data would lead

to biased detectors. Thus, we modified the audio files with

no noise, by introducing 0.8 s of silence before and after

the original audio. Then, car noise obtained from AURORA-

2 database were added in order to achieve an SNR in the

interval [5 dB, 20 dB] in steps of 5 dB. For this purpose,

we used the same procedure to generate noisy files from

the original corpus [25]. This balancing ensures that the

detectors G.729-B/II and LTSD work properly since they

use the beginning of the modified files to estimate the noise

features. We should notice that 70% of the modified files were

randomly chosen for training and the other 30% for test.

Feature extraction: Two configurations of feature vectors

stood out for VAD using DRBM. The first is based on mel-

frequency cepstral coefficients (MFCCs) and the second, on

the filter-bank energies (FBEs), a byproduct of the MFCCs

computation. To compute MFCCs and FBEs, the audio of

each file was filtered by a pre-emphasis filter (with coefficient

equal to 0.97) and the resulting signal was segmented in

frames with overlap of 25 ms and shift of 10 ms between

frames. From each frame, we extracted the thirteen first

MFCCs and the energies (corresponding to the FBEs) of the

23 channels used in filter banks. The mean-square value of

the samples of a frame (frame energy – FE) was also included

in the feature vector. Details of the considered configurations

arw shown in Table II.

Table II
DETAILS OF THE FEATURE VECTORS.

Config. Contents of the vector Dimension

C1

13 normalized MFCCs (zero mean and unit
variance) + log(FE), in conjunction with their
first and second time derivatives. 42

C2

23 normalized FBEs + log(FE) (unity magni-
tude) in conjunction with their first and second
time derivatives. 72

Training: Due to preliminary tests with different number of

hidden units (nh) and learning rates (λ), we chose nh =30
and λ=0.005 for training the DRBM for all SNR values.

The training samples, composed by the feature vectors and

the corresponding manual labels, were divided in lots of 70
samples for the gradient computation.

Performance evaluation: To evaluate the performance of the

detectors, we consider the area under the ROC curve (sensibil-

ity versus specificity), which is usual in telecommunications

field. The VADs G.729-B/II do not have a configurable de-

tection threshold and therefore, only one point of ROC curve

can be obtained. This point in conjunction with the theoretical

points (0, 0) and (1, 1) enable the calculus of the area. Since

the performance of these VADs could be underestimated with

this method, we also used the balanced accuracy (average

of sensibility and specificity). The performance of LTSD

was evaluated by running this VAD with different detection

thresholds for the files of the corpus. For the detectors based

on DRBM, the threshold was chosen by evaluating the proba-

bility (Eq. (6)) that a given sample is speech. For both LTSD

and DRBM, the accuracies shown in the sequel were obtained

with the best detection thresholds (obtained by means of

numerous simulations). Besides these performance indicators,

we also compare the detectors in terms of computational cost.

For this purpose, we use the work rate, defined as the ratio

between the processed audio time and the time necessary to

complete this task. This measurement indicates how many

seconds of audio are precessed in 1 second of processor usage.

Results: Fig. 2 shows the area under ROC curve for the

detectors evaluated in different SNR conditions. The DRBMs

using configurations C1 and C2 (Table II) are identified as

DRBM-C1 and DRBM-C2, respectively. We can observe that

the smaller the SNR the worse the performance of G.729-B.

On the other hand, G.729-II presents better results, but it is

outperformed by the LTSD detector. Finally, DRBM-based

VADs slightly outperform LTSD for most values of SNR.
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Figure 2. Area under ROC curve for different values of SNR.

Table III shows the accuracy for the evaluated VADs. These

results are qualitatively similar to the previous ones. Along

the SNR values, we can observe that DRBM-based VADs

present better performance in the mean when compared to

the others.

We should notice that the results obtained by DRBM-

based VADs with the different configurations (C1 and C2)

are relatively close. Configuration C2 is based on the FBEs,

which lead to a correlated feature vector. On the other hand,

Configuration C1 is based on MFCCs, which are computed

by applying the discrete cosine transform to the logarithm of

the FBEs, producing an uncorrelated vector (which is usually

considered beneficial for posterior processing). Therefore, this

similar performance indicates that DRBMs can lead to proper

results even when the the feature vector is strongly correlated.

The same conclusion was pointed out in [23] for DBN-DNNs.

The outputs of the detectors for different values of SNR are

shown in Fig. 3. We can observe the performance of that all

of them gets worse with the decrease of SNR.

To close this section, the computational costs of the de-

tectors were empirically obtained. The work rates of the
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Table III
ACCURACY OF THE DETECTORS FOR DIFFERENT SNRS.

SNR(dB) DRBM-C1 DRBM-C2 LTSD G729-II G729-B

∞ 97.76% 97.72% 93.73% 91.80% 95.95%

20 93.72% 91.66% 91.07% 85.55% 88.38%

15 90.93% 91.40% 89.70% 86.98% 85.82%

10 88.27% 86.81% 86.96% 86.85% 82.32%

5 82.60% 83.14% 82.83% 84.29% 76.63%

0 77.31% 78.52% 76.88% 76.35% 65.80%

-5 67.94% 67.37% 66.62% 66.76% 56.68%

Mean 85.50% 85.23% 83.97% 82.65% 78.80%
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Figure 3. Outputs of the detectores for different SNRs: (a) No noise,
(b) 10dB, (c) 0dB. For each SNR, over the audio we can see (1) the
manual labeling and the outputs of the detectors: (2) DRBM-C1, (3)
DRBM-C2, (4) LTSD, (5) G.729-II e (6) G.729-B.

considered VADs are shown in Table IV. Since this measure

depends on the details of the algorithm implementation, the

values of Table IV allow us to compare only the orders of

magnitude of the costs. Taking this into account, DRBMs

present computational costs of the same order of magnitude

to that of LTSD. On the other hand, G.729-B/II present

higher computational costs since they are implemented in

conjunction with speech codification.

IV. CONCLUSION

In this paper, we proposed a Gauss-Bernoulli DRBM

and used it for voice activity detection. Simulations were

Table IV
WORK RATE OF THE DETECTORS.

DRBM-C1 DRBM-C2 LTSD G729-II G729-B

346,4 243,2 174,8 34,7 35,2

performed on a wide range of signal-to-noise ratios and

considering two feature vectors: one based on MFCCs and

another on FBEs. From these experiments, we could verify

that DRBM-based VADs slightly outperformed the LTSD

detector, considered as benchmark for detectors, and con-

siderably outperformed G.729-B and G.729-II, VADs used

in industry. Moreover, these behaviors were obtained with a

DRBM of small dimensions (30 hidden units) that present a

computational cost comparable to that of LTSD. Additionally,

simulations algo show that DRBM is able to properly deal

with correlated inputs. In a future work, we intend to compare

the DRBM-based VAD with another machine-learning VAD

(e.g., SVM) and consider different types of noise.
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