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Abstract—It is known that combinations of the least mean

square (LMS) and recursive least squares (RLS) algorithms

may achieve a performance in tracking better than what is

possible to obtain with either kind of filter individually. In this

paper, we consider combinations of LMS and RLS filters and

compare their performance under a nonstationary condition

with the optimal solution obtained via Kalman filter. We show

that combination schemes may have a tracking performance

close to that of a Kalman filter, but with lower computational

complexity (linear in the filter length instead of quadratic —

in the case of the example shown here — or cubic, for general

Kalman models).

I. INTRODUCTION

When choosing an adaptive algorithm for a given ap-
plication, one of the important points to be considered is
the algorithm’s ability to track variations in the parameter
vector one wishes to estimate [1]. The Kalman filter (KF)
has long been shown to be the optimal solution to many
tracking and data prediction tasks [2], and is optimal in the
sense it minimizes the mean square error of the estimated
parameters when all noises involved are Gaussian and the
parameter vector to be estimated changes following a linear
model [2].

In time-varying scenarios, combination schemes offer
improved tracking capabilities with respect to the compo-
nent filters [3]. Nevertheless, when a combination of two
adaptive filters of the same family is used, for example
two least mean-squares (LMS) with different step sizes, or
two recursive least-squares (RLS) with different forgetting
factors, the resulting performance will never be better than
the performance of each filter using optimum settings for a
certain nonstationary condition.

As it was shown in [4], [5], when combining filters from
different families, namely LMS and RLS, it is possible to
take advantage of the tracking properties from each filter and
obtain a structure with better performance than if each filter
were implemented individually. Combinations of Kalman
Filters were also proposed using different update rules as
proposed in [6] and [7].
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Assuming we want to estimate a vector with M parame-
ters, the computational complexity for a convex combination
between one LMS and one RLS can be implemented with
O(M) operations (if lattice or Dichotomous Coordinate
Descent - DCD algorithms are used) and the Kalman Filter
requires O(M2) operations (for a first-order random walk
state-space model, see (10) below), or O(M3) for a gen-
eral state-space model. This paper describes how close the
combination scheme can get to the optimal excess mean
square error (EMSE) obtained via Kalman Filter. We show
that the performance gain obtained with the Kalman filter
is not very large, less than 1dB, even when we do not have
exact knowledge of the true covariance matrix of the noise
process.

This paper is organized as follows: in Section II we review
the LMS and RLS algorithms, as well as their respectively
combination, and also the Kalman filter equations. Section
III presents the data model adopted in this paper. Section IV
compares the performance of each algorithm under different
conditions, and finally, section V concludes the paper.

II. PROBLEM FORMULATION

Let d
n

be a zero-mean scalar-valued real random variable
with variance �2

d

, and let u
n

be a 1 ⇥ M zero-mean real-
valued random input regressor vector with positive-definite
covariance matrix denoted by R

u

= E{uT

n

u
n

}. Then, the
solution wo

n

of the linear least-mean-squares problem

min
w

= E |d
n

� u
n

w|2, (1)

can be approximated recursively as follows [8], [9]

w
n

= w
n�1 + f [d

n

,u
n

, s
n

]. (2)

Different adaptive schemes are characterized by their update
functions f [·] (s

n

represents any other state information that
is needed for the update rule). For the LMS and RLS cases,
the following equations describe how to update w

n

at each
iteration n, respectively [8], [9]:

w
n

= w
n�1 + µuT

n

[d
n

� u
n

w
n�1], (3)
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where µ is a positive step-size (usually a small value), � is a
forgetting factor, and P

n

is an estimate of the inverse of the
regressor autocovariance matrix Ru, which can be computed
in an efficient way using the matrix inversion lemma, RLS-
DCD algorithm, or if lattice algorithms are used, its explicit
evaluation may be avoided [3], [8], [10].

Comparing both algorithms, the RLS has faster initial
convergence, but has larger computational complexity, and
LMS is initially slower, but has smaller computational
complexity and is more robust [8], [9], [11]. Despite the
fact that the standard RLS has O(M2), fast O(M) versions
of RLS (such as lattice [8] or Dichotomous Coordinate
Descent algorithm - DCD [12]) can be applied to reduce
the complexity.

According to [4], a convex combination approach is an
interesting way to improve adaptive filter performance. In
this case, the individual filters are independently adapted
using their own error signals, while the combination is
adapted by means of a stochastic gradient algorithm in
order to minimize the error of the overall structure. Fig.
1 illustrates a block diagram of this combination.

Figure 1. Block diagram of an adaptive convex combination of two
transversal filters.

The output of the overall filter combination is denoted by

y
n

= �
n

y1
n

+ [1� �
n

]y2
n

, (5)

where y1
n

and y2
n

are the outputs of two transversal filters at
time n, i.e, yi

n

= u
n

wi

n

, i = 1, 2, e1
n

and e2
n

are the output
filters errors (ei

n

= d
n

� yi
n

, i = 1, 2), and �
n

is a mixing
scalar parameter that lies between zero and one.

The idea behind the combination is that the best properties
of the individual filters w1

n

and w2
n

can be extracted if �
n

is assigned with the appropriate values at each iteration n.
In all cases mentioned until now, no information about

how the optimum solution wo

n

evolves with time was used

to compute the solution w
n

. But, if we have access to such
information, a Kalman Filter (KF) can be implemented in
order to solve the problem optimally.

The KF is the optimal linear least-mean-squares (l.l.m.s.)
solution to the problem of sequentially estimating the states
of a dynamical system in which the state evolution and
measurement processes are both linear and Gaussian [13].
Thus considering a state-space description of the form:

x
n

= F
n

x
n�1 +G

n

t
n

(6)

z
n

= H
n

x
n

+ v
n

(7)

where x
n

is the M⇥1 state vector, F
n

is the M⇥M state-
transition matrix, G

n

is the M ⇥N control-input model, t
n

is a N ⇥ 1 Gaussian random state noise vector with zero-
mean and covariance matrix T

n

, z
n

is the D⇥1 observation
vector, H

n

is the D ⇥ M measurement matrix, and v
n

is
a D ⇥ 1 Gaussian random measurement noise vector with
zero-mean and covariance matrix R

n

.
In this case, given observations z

n

that satisfy the state-
space model described in (6) and (7), an approximate solu-
tion x̂

n

can be recursively computed by using the following
set of KF equations [8]:

Re,n = R
n

+H
n

P
n|n�1H

⇤
n

(8a)
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e
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where P
n|n�1 is the M ⇥M error covariance matrix, i.e.,

P
n|n�1 = E{(x

n

� x̂
n|n�1)(xn

� x̂
n|n�1)

T },

K
n

is the M ⇥D Kalman gain, S
n

is the cross-covariance
matrix between the noise processes (t

n

and v
n

) which is
equal to E{t

n

v⇤
n

} and e
n

is a D ⇥ 1 error vector. Here,
the notation n|n � 1 is used in order to indicate that the
estimation is based on the observations from z0 through
z
n�1.
As we can see in equations (8b) and (8e), in general one

needs O(M3) operations to compute the Kalman gain and
the covariance matrix P

n+1|n. Depending on the applica-
tion, this computational cost may be prohibitive. We propose
here to use a combination of an LMS and an RLS instead,
and show that, in the case of the model usually employed
to study tracking of adaptive filters, the optimum solution
obtained with the KF is only slightly better than the result
obtained with the combination.
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III. DATA MODEL

In the sequel we adopt the following assumptions.
• d

n

and u
n

are related according to the following linear
regression model

d
n

= u
n

wo

n

+ v
n

, (9)

where v
n

is i.i.d. noise, independent of u
n

and with
variance �2

v

.
• E{u

n

} = 0 and E{d
n

} = 0.
• wo

n

changes according to a first-order random walk

wo

n

= wo

n�1 + q
n

, (10)

where q
n

is independent of u
n

, with autocovariance
Q

n

.
Note that, due to its simplicity, this is the most usual model
used in the literature to study tracking properties of adaptive
filters [8]. By comparing the state-space model described in
(6) and (7) with the random-walk described in (10) and the
linear regression model described in (9), the Kalman model
corresponding to (10) and (9) is such that: x

n

corresponds
to wo

n

, H
n

corresponds to u
n

, t
n

corresponds to q
n

, z
n

corresponds to d
n

and the matrices F
n

and G
n

are equal
to I

n

, where I
n

denotes the M ⇥M identity matrix. Under
these conditions, the number of matrix multiplications of
equations (8b) and (8e) are reduced, resulting in a O(M2)
computational complexity for the KF.

As will be shown in section IV, once the matrix Q
n

is known, the excess mean-square error (EMSE) obtained
via KF can be closely approximated by the combination
of two adaptive filters (namely LMS and RLS) and their
respectively parameters, step-size µ and forgetting factor �,
which are chosen optimally according to the equations [8]:

µ
o

=

s
Tr{Q

n

}
�2
v

Tr{R
u

} , �
o

= 1�
s

Tr{Q
n

R
u

}
�2
v

M
, (11)

where µ
o

and �
o

are the optimum tracking parameters, and
�2
v

is the variance of the random measurement noise v
n

.
The advantage is that the combination can be imple-

mented with O(M) complexity, while the Kalman Filter
for model (10) requires computational complexity O(M2).
Recall also that, using the method of [4], combination
schemes can achieve a performance close to the optimum,
even without knowledge of the true value of Q

n

.
We also define the following error variables that are

commonly used to characterize the performance of adaptive
filters [8]:

• A priori filter error:

ea
n

= u
n

w̃
n

,

where w̃
n

= wo

n

�w
n

.
• Filter error:

e
n

= d
n

� u
n

w
n

= ea
n

+ v
n

.

• Excess Mean Square Error (EMSE):

⇣
n

= E{(ea
n

)2} = E{(e
n

)2}�E{(v
n

)2}.
During their operation, adaptive filters normally go from

a convergence phase, where the expected error decreases,
to a steady-state regime in which the error tends towards
some asymptotic value [14]. Table I presents the theoretical
optimum EMSE expressions for each adaptive filter (with
their respectively combination) [3].

Table I
OPTIMUM STEADY-STATE EMSES (⇣

o

) FOR LMS, RLS AND THEIR
COMBINATION.

Alg. ⇣
o

LMS
q

�2
v

Tr{R
u

}Tr{Q
n

}
RLS

q
�2
v

MTr{Q
n

R
u

}
Combination

⇣1⇣2 � ⇣212
⇣1 � 2⇣12 + ⇣2

where ⇣1 = ⇣LMS

o

, ⇣2 = ⇣RLS

o

and ⇣12 is given by [3]:

⇣12 = µ
o

�
o

�2
v

Tr(⌃) + Tr{Q
n

⌃}, (12)

with ⌃ = (�
o

I
n

+ µ
o

R
u

)�1R
u

.

IV. SIMULATIONS

As shown in [15], when the LMS and RLS filters are
combined following the same approach, an interesting result
is obtained. Assuming the tracking model (10) and consid-
ering the optimum LMS and RLS filters with adaptation
parameters given by expressions described in (11) [14],
LMS will outperform RLS if Q

n

is proportional to the
autocorrelation matrix of the input signal, R

u

, and the
opposite will occur when Q

n

/ R�1
u

.
Consider an example where Q

n

is a mixture of R
u

and
R�1

u

given by [14]:

Q
n

= 10�5


↵

R
u

Tr(R
u

)
+ (1� ↵)

R�1
u

Tr(R�1
u

)

�
, (13)

where ↵ 2 (0, 1).
Then, as can be seen in Fig. 2, the steady-state EMSE

that can be achieved by combining both types of filters
(LMS and RLS) with optimum settings, is within less than
1dB from the optimum EMSE obtained via KF. However,
the computational cost is reduced from O(M2) to O(M)
operations (if a lattice or DCD implementation are used for
RLS). Other settings considered for this simulation were:
M = 7, �2

v

= 10�2, R
u

a Toeplitz matrix with first row
given by

1

7

⇥
1 0.8 0.82 . . . 0.86

⇤
,

F
n

= G
n

= I
n

, H
n

= u
n

, z
n

= d
n

and R
n

= �2
v

. For
this experiment, 1000 simulations were performed in order
to obtain ensemble average EMSE curves for each filter. In
this example, µ and � were chosen optimally according to
(11).
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Figure 2. Simulated steady-state EMSE for LMS, RLS, their convex
combination and KF, when Q

n

smoothly changes between R
u

and R�1
u

.

Even if an M ⇥M positive-definite random perturbation
(with spectral norm 10% of the original Q

n

) is added to the
covariance matrix Q

n

at each realization (according to Table
II), the combination still has an EMSE close to that of the
KF (see Fig. 3). Note that the step size and forgetting factor
were still chosen according to (11), but using the nominal
value for Q

n

, so the filters are not operating in the optimal
condition anymore.

Table II
COVARIANCE MATRIX Q

n

WITH RANDOM PERTURBATION.

Step Equation
01 Initialization: Q

n

= Equation (13)
02 For realizations L = 1, . . . , 1000
03 X = randn(M)⇤10�6 % Auxiliary random variable
04 [U,S,V] = svd(X) % Singular Value Decomp. of X
05 � = U⇤abs(S)⇤U0 % M ⇥M random perturbation
06 Q

n

= Q
n

+� % Q
n

with random perturbation
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Figure 3. Simulated steady-state EMSE for LMS, RLS, their convex
combination and KF, when a random perturbation is added to Q

n

.

V. CONCLUSION

Combination approaches are an effective way to improve
the performance of adaptive filters. In this paper we have
studied the tracking performance of combinations of LMS
and RLS filters and compared the resulting EMSE with the
optimal case obtained via Kalman Filter.

As it was shown, by using a convex combination between
LMS and RLS, it is possible to achieve a steady-state EMSE
performance close to the optimal case obtained via Kalman
Filter, when a non-stationary environment is considered. The
advantage arises from the fact that the combination can be
implemented with O(M) complexity, while it takes at least
O(M2) operations to compute the corresponding Kalman
Filter. Similar performance was still obtained, even without
precise knowledge of the true value of Q

n

.
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