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Abstract—Convolutional neural networks (CNNs) are a staple 

in the fields of computer vision and image processing. These 

networks perform visual tasks with state-of-the-art accuracy; yet, 

the understanding behind the success of these algorithms is still 

lacking. In particular, the process by which CNNs learn effective 

task-specific features is still unclear. This work elucidates such 

phenomena by applying recent deep visualization techniques 

during different stages of the training process. Additionally, this 

investigation provides visual justification to the benefits of transfer 

learning. The results are in line with previously discussed notions 

of feature specificity, and show a new facet of a particularly vexing 

machine learning pitfall: overfitting. 
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I. INTRODUCTION 

Convolutional neural networks (CNNs) have provided state-
of-the-art performance in a variety of computer vision and image 
processing applications [1]. Recent developments in hardware, 
namely GPUs, have caused an inundation of CNN-based 
methods. That said, a discrepancy exists between knowledge of 
how to construct such algorithms and knowledge of how these 
algorithms operate. One major criticism of CNNs in general 
refers to the treatment of the algorithm as a “black box”, with 
the ultimate result of the training procedure shrouded in mystery. 
Although the process of backpropagation used to modify filter 
weights has been thoroughly discussed, describing the function 
of these features has been less explored. 

Algorithms that fall under the category of deep visualization 
strive to address such issues. At their core, these methods 
attempt to bridge the gap between human and machine 
perception by illustrating CNN features in a visual manner. This 
paradigm differs from some traditional views on CNN analysis 
that are primarily results oriented. It is common practice to judge 
the efficacy of any modifications to a network or dataset by the 
capacity to increase performance. Of course, this is a 
functionally logical approach to CNN design; however, not 
observing changes to the network features themselves is another 
example of the “black box” methodology. Such thinking may 
inhibit progress towards the next breakthrough in machine 
learning. It is the intention of deep visualization to aid in 
combatting the esoterica of CNNs.  

II. RELATED WORK 

Deep visualization encompasses several approaches that 
have been described in the literature. This analysis will focus on 
a technique called activation maximization. The term was 
perhaps first coined in a 2009 publication in which the authors 
describe “qualitative interpretations of high level features” [2]. 
They produce visualizations from a deep belief network (DBN) 
trained on the classic MNIST digit classification dataset that 
confirm intuitions held about the learned representations. Since 
then, several authors have employed activation maximization 
and modified the procedure or usage. Yosinksi et al. [3] applied 
the method to a more complex classification problem and 
developed an accompanying software toolbox for interactive 
visualization. A 2015 investigation at Google described a 
technique that modified activation maximization with the 
purpose of creating art as “inceptionism” [4]. In [5], the 
algorithm was modified to highlight the multifaceted nature of 
specific network neurons. Mahendran and Vedaldi [6] created a 
generalized algorithm to perform activation maximization as 
well as another deep visualization method: inversion. 

Inversion produces a different kind of visualization that is 
primarily used to quantify the loss of information at increasingly 
deep network layers. In essence, the ability for a network to 
reconstruct an input image from features at a given layer signify 
the information retained in those layers. Mahendran and Vedaldi 
first described their inversion method in [7], and Dosoviskiy and 
Brox supply a different approach in [8]. Inversion is related to 
another type of visualization that uses a “deconvolutional” 
network to identify stimuli of individual feature maps [9]. This 
identification is akin to locating the receptive field of a feature, 
a concept also explored in [10]. 

A third class of deep visualization algorithms can be 
described as sensitivity or saliency maps, which illustrate the 
support of a particular feature in a given image. Simonyan et al. 
[11] compare this method with a form of activation 
maximization. In [12], the authors show sensitivity maps with 
evidence both for and against a particular class, while [13] 
develops heatmaps showing relevance or importance of image 
regions. 

All of these methods yield complementary views of the 
information in neural network features. Because this analysis 
focuses on activation maximization, a more detailed explanation 
of the procedure is outlined in the next section. 
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III. ACTIVATION MAXIMIZATION 

The following explanation of the activation maximization 
method will synthesize information from [3] with additional 
description supplied by [6]. As previously suggested, the 
algorithm aims to create visual representations of CNN features, 
either at the convolutional filter level or object class level. In this 
manner, the method can be cast as an inverse problem that is 
solved using an optimization approach. To begin, consider an 
RGB image that produces some activation when passed through 
a CNN. Yosinksi formulates the problem as in [3]: 

 𝑥∗ = arg max
𝑥

(𝑎𝑖(𝑥) − 𝑅𝜃(𝑥))

where 𝑥∗ is the final visualization, 𝑥 is a candidate input image 
to the network, 𝑎𝑖(𝑥) is the activation for some particular unit 𝑖, 
and 𝑅𝜃(𝑥)  is some parameterized regularization function. In 
general, the unit 𝑖 to be maximized can be the index of a filter or 
element in any layer of the network; however, in this case, the 
following analysis will only concern maximizing indices 
representing classes in the last layer of the network. The final 
visualization will be a synthetic RGB image of the same size as 
the input. One can also formulate a minimization to accomplish 
the same task, as Mahendran and Vedaldi do in [6], that is: 

𝑥∗ = arg min
𝑥

(𝑙(𝛷(𝑥), 𝛷0) + 𝑅𝜃(𝑥))

where 𝑙(𝛷(𝑥), 𝛷0)  is a loss function between the feature 
representation of the input 𝛷(𝑥)  and the target feature 
representation 𝛷0. 𝛷0 can either be the weights of the filter one 
wishes to visualize, or in this analysis, the final feature vector of 
the target class. In this case, the loss function is usually defined 
as the Euclidean distance between the two vectors. 
Alternatively, although the logic is somewhat circular, the loss 
function can be defined as the negative of the similarity, 
typically calculated using a dot product. This analysis will opt 
for the simpler case defined by Yosinski [3]. 

The optimization can be effectively solved using a gradient 
descent procedure. The pixels in 𝑥 are modified in the direction 
of the gradient of 𝑎𝑖(𝑥). Consequently, the regularization is 
usually applied to the gradient step rather than in the objective 
function itself. Several regularizers are suggested in [3] and [6], 
with the overall goal of restricting the visualizations to natural-
looking images. Without such a condition, the resulting images 
will not be semantically interpretable to humans, even if they are 
reasonable solutions to the optimization. The authors in [6] 
present two bounds on pixel range and variation, which have 
some corollaries in [3]. Some more complex functions that 
involve pixel shifts and texture regularizers are also presented. 
There is not a clear consensus on the optimal regularization 
methods; therefore, this analysis opts for two relatively simple 
conditions. Pixel changes that fall outside the normal range are 
clipped, and a 5x5 median filter is applied every four gradient 
steps. It was experimentally found that these conditions were 
satisfactory to produce semantically interpretable visualizations.  

IV. NEW APPLICATIONS: FEATURE EVOLUTION AND TRANSFER 

LEARNING 

At this point, activation maximization as a method for deep 
visualization has been thoroughly discussed, both in usage as 
well as in implementation. Yet, there is much untapped potential 
in this domain. One key assumption that predicates the use of 
the algorithm is the existence of a fully trained network. This 
condition is a natural one: it is logical to visualize features after 
their modifications during training. However, perhaps 
visualizing the evolution of features during the training process 
would be even more enlightening. Most observations of neural 
network training have involved tracking values of loss functions 
or validation accuracies; now, there is an opportunity to 
visualize the actual features at play. By visualizing features at 
several time points during training, the evolution of features can 
be compared to improvements in performance and shed light on 
the otherwise obfuscated learning procedure. 

This new line of thought also presents the chance to observe 
another somewhat enigmatic facet of neural networks: transfer 
learning. As described in [14], the generality of low-level 
features suggests that a network trained on one task may only 
need to slightly modify those features in order to perform an 
entirely different task on new data. The authors argue that it is 
the deep layer features that are task specific and thus require 
greater changes. In practice, this manifests itself when a standard 
CNN architecture is initialized with weights from one task and 
then fine-tuned with a new dataset. It can be seen that the 
training procedure will converge faster, and in some cases the 
accuracy may even be higher than if the starting weights were 
randomly initialized. With this new paradigm of using activation 
maximizations to visualize features during learning, perhaps a 
greater understanding of this phenomenon will emerge. 

V. RESULTS AND DISCUSSION 

Two experiments were designed to examine visualizations 
that arise during the training of a CNN. In one instance, the 
filters weights in the network were randomly initialized in the 
usual fashion. The other case began with weights trained on the 
ImageNet ILSVRC 2012 dataset for 1000 class object 
classification [15]. The CNN architecture used in both cases is 
the VGG-16 network described in [16]. The network was 
implemented in Theano using Keras as a front-end [17][18]. 
Some additional references were used in the compilation of the 
code [19][20]. The Adadelta optimizer was used in the training 
procedure [21], and categorical cross entropy was used for 
classification. The network was trained using an NVIDIA Titan 
Z, with total training times on the order of several hours. The 
activation maximization implementation also made use of the 
Titan Z, where each visualization took 2.5 minutes to complete. 

In both instances, the classification task was to differentiate 
between a small subset of the ImageNet data. Namely, only four 
classes were used: tree frog, flamingo, pool table, and 
hamburger. Because there are only four classes in this new task, 
the last layer of the VGG network was changed from a length of 
1000 to a length of four. As a result, the weights from this layer 
could not be transferred in the pretraining experiment. Each 
class contains 1300 images, yielding a total dataset of 5200 
images. 400 of these images were put aside in a validation set. 
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Epoch 1 2 4 6 8 12 13 18 23 

Validation 

Accuracy 

60% 80% 83% 88% 89% 90% 91% 92% 93% 

Table 1. Validation accuracy during training; no pretraining 
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Fig. 1. Visualizations of network at each training epoch; no pretraining. Classes from upper left (clockwise): tree frog, flamingo, hamburger, pool table 

 

 

 

 

Epoch 1 2 6 7 8 14 20 

Validation 

Accuracy 

59% 89% 91% 95% 96% 96% 93% 

Table 2. Validation accuracy during training; pretrained on full ImageNet 
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Fig 2. Visualizations of network at each training epoch; pretrained on full ImageNet. Classes from upper left (clockwise): tree frog, flamingo, hamburger, 

pool table 
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A. Trained from randomly initialized weights 

Table 1 shows the validation accuracy during training at each 
epoch. After the training set is passed through the network a 
single time, the model performs classification on the validation 
set with 60% accuracy. The model is fully trained after 23 
epochs and achieves 93% accuracy at this time. Only epochs in 
which the validation accuracy increases are shown. The 
corresponding activation maximizations at each epoch are 
shown in Fig. 1. Each image is divided into four sections, each 
corresponding to one class. The classes, starting from the upper 
left section in clockwise order are: tree frog, flamingo, 
hamburger, and pool table.  

To begin, it is clear that the visualizations at the early layers 
of the network are not very informative. At this stage, the 
convolutional filters have not been fully developed, nor is the 
validation accuracy high enough to justify their efficacy. That 
said, within a few epochs one can see some salient features 
forming. In epoch 4, it appears that the tree frog class is 
represented by a series of green lines, the flamingo class by some 
pink shapes, and the hamburger class by similar brown shapes. 
The pool table class is more strongly defined, with the 
visualization showing a very prominent horizontal colored line 
detector. Perhaps this shows an early understanding of the 
discontinuity between the colored felt of a pool table and the 
wooden rails. After epoch 12, the validation accuracy exceeds 
90% and while the features do appear to increase in complexity, 
they are not nearly representative of their corresponding classes.  

Based on the results in the literature of activation 
maximization applied to networks trained on the full ImageNet 
dataset, one would expect the visualizations to more closely 
resemble the original objects. Fig. 3 shows the visualizations of 
such a network; in this case, activation maximization was 
applied to the VGG network fully trained on the entire ImageNet 
set and without any fine-tuning with the small four-class subset. 
One can clearly see notions of the objects in these visualizations, 
from frog eyes and flamingo necks to pool balls and hamburger 
buns. It appears that the discriminatory power of a feature is 
heavily dependent on the difficulty of the task: a simpler 
classification task will yield simpler features even when the 
constituent data is the same. 

B. Pretrained with full ImageNet 

This observation is further supported by the results in Fig. 2, 
showing the visualizations of a network pretrained on the full 
ImageNet dataset. The corresponding validation accuracies at 
each epoch are shown in Table 2. In this instance, the network 
converges to high validation accuracies sooner than previously. 
This is to be expected, given the transferred knowledge already 
in the network. The eventual maximum accuracy is higher, 
reaching 96% by epoch 8. Again, given the study of transfer 
learning in [14], this result is unsurprising. The features are also 
more complex; but, yet again, the features are not as complex as 
in Fig. 3. It may be argued that the tree frog features resemble 
eyes by epoch 8, the flamingo shapes are more pronounced, and 
the hamburger buns are more discernable. The pool table 
features are much more apparent; in fact, the visualization in 
epoch 14 does seem to show red pool balls lined up on blue or 
green felt. Many deductions can be made from these results. For 
one, it may be argued that the additional accuracy from 

pretraining is most likely due to the added feature complexity. 
Furthermore, these results still support the theory that 
simplifying the classification task will result in less complex and 
well-defined features. 

One final modification was made in this experiment: a 
visualization was shown for epoch 20, where the validation 
accuracy slightly decreases. Given that the training loss at this 
time was still decreasing, this suggests that the network may 
have begun to overfit the data. It seems that even though the 
complexity of the features is still increasing, the images 
themselves are less clear. For example, it appears the tree frog 
eyes that exist in epochs 8 and 14 begin to manifest themselves 
in the visualizations of other classes by epoch 20. One 
particularly notable case is in the bottom section of the flamingo 
visualization. In addition, the pink neck shapes that define the 
flamingo class appear in both the tree frog and pool table 
visualizations. Perhaps this confusion of features is an 
illustration of the mechanism behind which overfitting can 
degrade the discriminative power of a network. More testing 
would be required to fully investigate this phenomenon. 

VI. SUMMARY AND FUTURE WORK 

Deep visualization of feature evolution, especially in the 
case of transfer learning, is a nascent approach to understanding 
CNNs. In this paper, activation maximization was used to 
experimentally show the following: 

 Feature complexity increases with validation accuracy, 
but can continue to increase even after accuracy saturates 

 Discriminative classification power of a network is a 
function of the number of classes; i.e. a CNN 
automatically generates features of just enough 
complexity to perform the task at hand, even when the 
network is pretrained on a more challenging task 

 
Fig. 3. Visualization of network trained on full ImageNet. Classes from 

upper left (clockwise): tree frog, flamingo, hamburger, pool table 
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 Training on a more challenging task (e.g. larger number 
of classes) will yield features that are more informative 
and archetypal of the representative class members 

 Unchecked feature complexity leads to feature confusion, 
a potential precursor to overfitting 

As discussed, additional testing into confusion of features 
may lead to greater understanding of the ever-present caveat of 
overfitting. Larger datasets with greater variety, such as 
increasing the subset of classes used in ImageNet, are a logical 
next step. Some modifications to the optimization algorithm for 
the visualizations may also prove useful, such as more intricate 
loss functions or regularizers. Freezing the fine-tuning of certain 
layers during pretraining is discussed in [14] and supplying 
visuals for this analysis may be enlightening. Finally, subjecting 
other deep visualization techniques, such as inversion, to this 
temporal analysis may enhance the information gleaned from 
these methods. 
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