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Abstract—This paper develops new designs for recommender
systems inspired by recent advances in graph signal processing.
Recommender systems aim to predict unknown ratings by
exploiting the information revealed in a subset of user-item
observed ratings. Leveraging the notions of graph frequency
and graph filters, we demonstrate that a common collaborative
filtering method – k-nearest neighbors – can be modeled as a
specific band-stop graph filter on networks describing similarities
between users or items. These new interpretations pave the way
to new methods for enhanced rating prediction. For collaborative
filtering, we develop more general band stop graph filters. The
performance of our algorithms is assessed in the MovieLens-100k
dataset, showing that our designs reduce the root mean squared
error (up to a 6.20% improvement) compared to one incurred
by the benchmark collaborative filtering approach.

Index Terms—Collaborative filtering, recommender systems,
graph signal processing, bandlimited graph signals, graph filters.

I. INTRODUCTION

The widespread deployment of the Internet technologies has
generated a massive enrollment of online customers in web
services, propelling the need for implementation of recom-
mender systems (RS) to assist customers in making decisions.
In a succinct way, RS are algorithms that collect information
about how users of a particular service rate different items.
The collected information is then used, along with additional
sources of exogenous information, to provide customers with
recommendations for the unrated items [1], [2].

Research on RS includes the so-called content filtering
approach, which starts by defining a set of features that
characterize users and items and then uses those to perform
predictions on the unrated items [1], [2]. It also includes the
collaborative filtering (CoFi) approach, which relies mostly
on past user behavior and carries out predictions without
defining an a priori set of features. Although CoFi comes
with certain disadvantages (in particular when rating new
products or users), it typically requires less assumptions than
content filtering and yields a superior performance in real
datasets [2]. As a result, it has emerged as the central approach
for RS. A common technique to design CoFi algorithms is
nearest neighborhood methods (NNM), which work under the
assumption that users who are similar tend to give similar
ratings for the same product, proceed into two phases. Firstly,
using a pre-specified similarity metric, a similarity score is
computed for each pair of users. Secondly, the unknown
ratings for a particular user are obtained by combining the
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ratings that similar users have given to the unrated items.
To avoid overfitting and simplify computations, only a subset
of the users (the ones who are more similar and have rated
the item) is considered. A similar approach can be used to
compute a similarity score among items, giving rise to the
so-caller item-based collaborative approaches.

The goal in this paper is to reinterpret CoFi algorithms using
tools from graph signal processing (SP). In simple words,
graph SP addresses the problem of analyzing and extracting
information from data defined not in regular domains such
as time or space, but on more irregular domains that can be
conveniently represented by a graph. The tacit assumption is
that the network structure defines a notion of proximity or
dependence among the nodes of the graph [3], [4], which
must be leveraged when generalizing classical SP algorithms
to process signals defined in more irregular graph domains.
The theory and applications of graph SP is growing rapidly
[5]–[10]. This paper designs new and more general schemes,
but equally relevant unveils important connections between
CoFi and graph SP. More precisely, we show that NNM can
be viewed as algorithms that obtain the ratings by processing
the available information with a graph filter. This interpretation
not only provides a better understanding on the differences and
similarities between both approaches, but it also opens the door
to the design of more advanced algorithms leading to a better
recommendation accuracy. In short, the contributions of this
paper are: (a) To demonstrate how the CoFi approaches based
on NNM can be considered from graph SP approach. (b) To
exploit this interpretation to design more general algorithms
for NNM. (c) To show that the proposed methods produce sig-
nificant improvement for the MovieLens-100k dataset [11]1.

II. FUNDAMENTALS OF COFI AND GRAPH SP

We start by introducing the basic notation and formulating
the CoFi problem. We then describe the NNM method and
review the graph SP tools used in the following sections.

Consider an RS setup with U users indexed by u, and
I items indexed by i. The rating that user u has given to
item i is represented as Xu,i. For mathematical convenience,
such ratings can be collected either into the rating matrix
X ∈ RU×I , or into the rating vector x = vec(X) ∈ RUI .
Additionally, vectors xu = [Xu,1, ..., Xu,I ]> ∈ RI represent
the ratings by the u-th user. To account for the fact that not

1 Notation: Generically, the entries of a matrix X and a vector x will be
denoted as Xij and xi; however, when contributing to avoid confusion, the
alternative notation [X]ij and [x]i will be used. In general, x̃ denotes the
frequency coefficients of x, while x̂ is the estimate of x. The notation > stands
for transpose; diag(X) is a diagonal matrix satisfying [diag(X)]ii = [X]ii
and zero for other entries; λmax(X) is the largest eigenvalue of the symmetric
matrix X;‖x‖p is the p-norm of x; and |X | is the cardinality of the set X .
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all ratings are available, let S denote the set of indexes that
identify user-item pairs whose rating is known. Similarly, Su
denotes a set containing the indexes of the items that user
u has rated. We can then use xS ∈ R|S| to denote a vector
containing the known ratings. The problem of interest is as
follows: Given the ratings xS for the item-user pairs in S,
estimate the full rating vector x (matrix X).

A. CoFi via NNM

As explained in the introduction, NNM builds on the
assumption that if a pair of users u and v possess similar taste,
then their ratings Xiu and Xiv for a particular item i, are going
to be similar as well. To formulate this rigorously, we start
with user-based NNM, and let B ∈ RU×U be a matrix whose
entry Buv denotes the similarity between the pair of users u
and v. Given the particularities of a CoFi setup, Bu,v has to
be computed using a metric that takes into account only the
ratings available in xS . Define the set Suv as the intersection
of Su and Sv , i.e., the set of items that have been rated by both
u and v, a common choice to compute the similarity score is
finding first the sample correlations as

ΣUuv :=
1

|Suv|
∑

i∈Suv

(Xui − µuv)(Xvi − µuv), (1)

with µuv :=
∑

i∈Suv
Xui/|Suv|. Note that the previous covari-

ances and means are found using only the items that were
commonly rated by u and v. The similarity score would then
be found by simply setting Buv = ΣUuv . In the context of RS,
a more common approach is to use Pearson correlations,

Buv =
[
(diag(ΣU ))−1/2 ΣU (diag(ΣU ))−1/2

]
uv
, u 6= v, (2)

and Buu = 0. The main idea behind NNM is that when
predicting the rating Xui, only the ratings Xvi from users v
that are very similar to u must be used. To do so, denote Kui

as the set of k users who are the most similar to u (largest
values of Buv) and have rated the item i. Leveraging these
definitions, the unknown ratings are finally predicted as

X̂ui =

∑
v∈Kui

Buv (Xvi − µv)∑
v∈Kui

Buv
+ µu, (3)

where µu =
∑

i∈Su Xui/|Su|. At an intuitive level, the
subtraction and addition of µv and µu account for the fact
that different users may be more generous than others.

B. Graph SP

Consider a directed graph G with a set of N nodes or
verticesN and a set of links E , such that if node n is connected
to m, then (n,m) ∈ E . For any given graph we define the
adjacency matrix A as a sparse N ×N matrix with non-zero
elements Am,n if and only if (n,m) ∈ E . The value of Am,n

captures the strength of the connection from n to m.
The focus of graph SP is on graph signals defined on the set

of nodes N . Formally, each of these signals can be represented
as a vector z ∈ RN where the n-th element represents the
value of the signal at node n. To facilitate the connections with
NNM, in this work we chose as shift the adjacency matrix A;
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Fig. 1: CoFi as graph filters. The ratings for each item can be
considered as graph signals on a network that depends on the
item. For each specific item, edges starting from users who
have not rate them are removed. Then, given a specific user
u, for all the edges coming into u, only the ones with the k-
highest edge weights are kept. Proper normalization are then
applied to make each Bi right stochastic.

however, our results can be easily generalized for other choices
such as Laplacians [3]. We assume S is diagonalizable, so that
S = VΛV−1 with Λ = diag(λ) ∈ CN×N being diagonal and
V = [v1,v2, . . . ,vN ]. When S is symmetric we have that V
is real and unitary, which implies V−1 = V>.

Graph filters are a particular class of linear graph-signal
operators able to be represented as matrix polynomials of S [4]

H :=
L−1∑
l=0

hlS
l. (4)

For a given input z, the output of the filter is simply y = Hz.
The filter coefficients are collected into h := [h0, . . . , hL−1]>,
with L−1 denoting the filter degree. The eigendecomposition
of S is used to define the frequency representation of graph
signals and filters. For a signal z ∈ RN and a graph shift
operator S = VΛV−1 ∈ R. The vectors

z̃ = V−1z and z = Vz̃ (5)

form a Graph Fourier Transform (GFT) pair [3], [4].
The GFT encodes a notion of variability for graph signals

akin to one that the Fourier transform encodes for temporal
signals [4], [12]. Specifically, the smaller the distance between
λp and |λmax| in the complex spectrum, the lower the fre-
quency it represents. This idea is based on defining the total
variation of a graph signal z as TV(z) = ‖z−Sz/λmax(S)‖1,
with smoothness being associated to small values of TV. Then,
given a (λp,vp) pair, one has that TV(vp), which provides an
intuitive way to order the different frequencies.

III. COFI FROM A GRAPH SP PERSPECTIVE

In this section, we show that if the ratings x are viewed
as graph signals defined on user-to-user networks, then NNM
predict signals x̂ that are bandlimited in the frequency domain
of those networks. That is, signals that can be expressed as a
combination of a few eigenvectors of the graph shift operator.
This viewpoint allows us to develop more general algorithms
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with better performance. To that end, let us focus on the
generation of x̂i, i.e., the predicted ratings for item i, using
the ratings from other users and the similarities among them.

The first step is to define the input graph signal denoted as
x̌i ∈ RU . This requires setting [x̌i]v = Xvi − µv for every
user v who has rated item i, and [x̌i]v′ = 0 for v′ /∈ Si.
Since the bias has been removed, setting the unknown ratings
to zero assigns a neutral preference for the item. The second
step is to construct the user-similarity network, which will
serve as graph shift operator. To this end, we start with the
matrix B whose entries are given in (2). Then, in order to
account for the fact that ratings from users who do not rate i
should not be considered when predicting i, we remove any
edges starting from v if Xvi is unknown. This implies that the
similarity network, which will be denoted as Bi, will depend
on the particular item i. The final steps are to keep only the
edges corresponding to the k most similar users and normalize
each row so that the resultant matrix is left stochastic [cf.
the denominator in (3)]. Mathematically, this implies that the
matrix Bi ∈ RU×U is defined as

[Bi]uv =

{
Buv/

∑
v′∈Ku,i

Buv′ if v ∈ Ku,i

0 if v /∈ Ku,i
, (6)

where we recall that Ku,i contains the k users that are most
similar to u and have rated item i. An example of this
procedure using the MovieLenss-100k dataset is illustrated in
Figure 1, where the top network represents the original B and
the subsequent plots represent Bi for several items.

Once the graph signal x̌i and the graph shift-operator Bi

are defined, the predicted ratings are simply given by

x̂i = Bix̌
i, (7)

cf. (3). In words, the estimated ratings are obtained after
applying the graph filter H = Bi to the input signal x̌i.

We now analyze the behavior of (7) in the frequency
domain, to conclude that H = Bi acts as a band-stop graph
filter. Given an item i, consider the eigen-decomposition for
the user-similarity network S = Bi = VΛV−1. Denote the
GFT of the known input signal as ˜̌x

i
= V−1x̌i, and the GFT

of the predicted rating as ˜̂x
i

= V−1x̂i. The two GFTs are
related via

˜̂x
i
=V−1x̂i =V−1Bix̌

i =V−1VΛV−1(V˜̌x
i
)=Λ˜̌x

i
. (8)

Therefore, the frequency response of the filter implementing
NNM is diag(h̃) = diag(b̃i) = Λ and the p-th frequency
coefficient of the predicted output is [˜̂x

i
]p = λp[˜̌x

i
]p. Since Bi

is likely to be non-symmetric, λp is expected to be a complex
number. Remember that λmax(Bi) is always 1 because of right
stochasticity and that eigenvectors can be ordered according
to TV(vp) = |λp−1|; see [12] and the related discussion after
Definition 1. As a result, smooth (low-frequency) eigenvectors
are signals where ‖vq − Bivq‖ ≈ 0; i.e., full rating signals
where users that are similar tend to agree.

To gain further intuition on the spectral behavior of (8), we
examine the frequency response of Bi for the MovieLenss-

100k dataset. Specifically, for each Bi, we order its eigenval-
ues according to |λp − 1|, and record the frequency response
b̃i for low, middle, and high frequencies. The I frequency
responses obtained using this procedure are then averaged
across i, giving rise to the single transfer function depicted in
Figure 2 (a). To help visualization, the scale in the horizontal
axis is not homogeneous and only the real part of the eigen-
values is shown (the imaginary part is very small). The main
finding is that the frequency response is zero for more than
90% of the frequencies, implying that the predicted signal will
be graph bandlimited. Another observation of interest is that
the frequencies not rejected by the filter and that are present
in the predicted output are the ones associated with the first
eigenvectors (low values of p) and the last eigenvectors (high
values of p). The first eigenvectors represent signals of small
total variation, while the last ones are associated with signals
of high variation. Since the diagonal elements of each matrix
Bi are zero, the sum of the eigenvalues is zero, with the eigen-
values associated with low frequencies being positive, and
those associated with signals of large total variance associated
being negative. The low-pass components represent signals
where similar users tend to have similar ratings, providing the
the big picture for the predicted rating. Differently, the high
pass component focuses on the differences between users with
similar taste for the particular item. With this interpretation
one can see (8) as a filter that eliminates the irrelevant features
(middle frequencies), smoothes out the similar components
(low frequencies) and preserves the discriminative features
(high frequencies). This band-stop behavior where both high
and low graph frequencies are preserved is not uncommon in
image processing (image de-noising and image sharpening,
respectively) [13], and was also observed in brain signal
analytics [8], [14].

IV. ENHANCING COFI VIA GRAPH SP

Using definitions and tools from graph SP, the previous
section demonstrated that the rating predictions generated by
NNM can be understood as signals that are sparse in a graph
frequency domain. In this section, we illustrate how these
interpretations can be leveraged to design novel graph-SP-
based CoFi methods with enhanced prediction performance.

As shown in Section III, the user-based NNM predict the
rating for item i via x̂i = Bixi, which can be modeled
as the implementation of a band-stop graph filter of order
one. Our proposal here is, using S = Bi as shift, to design
other types of band-stop graph filters H(S) to perform rating
predictions. Consider first H = B2

i , whose frequency response
is diag(h̃) = diag(b̃i)

2 = Λ2. The fact of Bi being a band-
stop filter implies that many of the entries of its frequency
response b̃i are zero. As a result, B2

i has a band-stop behavior
too and the same holds true for any positive power of Bi. Since
all powers of Bi are band-stop operators, the unknown ratings
predicted with graph filters of the form

x̂i = Hx̌i with H =

L∑
l=0

hlB
l
i, (9)
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Fig. 2: (a) and (b): Frequency response for the graph filters. For each Bi, we order its eigenvalues according to |λl−λmax| to
denote high and low frequencies, and record the corresponding frequency response for low, middle, and high frequencies. The
average behavior of such frequency response across all Bi is visualized. (a) Response for user-based CoFi; (b) Response for
the best user-based filter trained on training set using networks {Bl

i}6l=1. (c) Sum of filter coefficients
∑L

l=1 hl for different
tap of filters. In both the Limit behavior test (Red) and Proper training (Blue), the sum of coefficients is close to 1.

will also give rise to bandlimited signals. Hence, predictions
in (9) are generalizations of the traditional NNM in (7),
which estimate x̂i using a filter H = Bi of order one.
This graph-frequency interpretation can be complemented by
understanding the effect of Bi on the graph vertex domain. To
do so, note that B0

i x̌
i = x̌i coincides with the original signal,

Bix̌
i is an average of the ratings given by one-hop neighbors,

B2
i x̌

i is an average of elements in nodes that interact via inter-
mediate common neighbors, and, in general, Bl

ix̌
i describes

interactions between l-hop neighbors. Therefore, on top of
using the ratings of very similar users to make predictions,
the powers of the matrix Bl

i in the graph filter in (9) also
account for chains of users with similar taste, exploiting them
to generate enhanced predictions.

Compared to classical NNM, the filter coefficients h are
not known a priori, and therefore need to be learned from a
training set. Besides, h0 is irrelevant since B0

ix
i = xi and

therefore would not be helpful in predictions. Then, the filter
coefficients are found by solving

min
h

∑
(u,i)∈S

∣∣∣∣∣
[(

L∑
l=1

hlB
l
i

)
x̌i

]
u

−Xu,i

∣∣∣∣∣
2

+ r‖h‖22, (10)

where r is a regularization parameter that can be tuned by
cross-validation on the training set to avoid overfitting. Note
that formulations in (10) are least square problems, which
using the Moore–Penrose pseudo inverse, admit “closed form”
solutions. If the value of L is too large and a sparse vector of
filter coefficients is desired, the regularizer ‖h‖22 can be either
replaced or augmented with ‖h‖1.

V. NUMERICAL EXPERIMENTS

In this section, we illustrate how our methods improve the
rating accuracy in real data. For that purpose we use the
MovieLens-100k dataset [11], which contains ratings from
943 users on 1,682 movies. The number of available ratings
is 100,000, i.e., the 6.3% of the total number of user-item

TABLE I: Generalized filtering – limit behavior: RMSE for
different taps with coefficients learned on the testing set Xts

Number of taps RMSE RMSE
(r = 0) (r = 0.5)

L = 1 0.9036 0.9036
L = 2 0.8921 0.8921
L = 3 0.8226 0.8735
L = 4 0.8218 0.8643
L = 5 0.8128 0.8593
L = 6 0.8073 0.8572
L = 7 0.8068 0.8560
L = 8 0.7922 0.8554
L = 9 0.8026 0.8550

TABLE II: Generalized filtering – proper training: RMSE for
different taps with coefficients learned on the training set Xtr

Number of taps RMSE RMSE
(r = 0) (r learned from cross-validation)

benchmark 0.9116

L = 1 0.9175 0.9175
L = 2 0.8875 0.8875
L = 3 0.8647 0.8647
L = 4 0.8661 0.8661
L = 5 0.8557 0.8554
L = 6 0.8609 0.8551 (6.20% improvement)

pairs. We randomly select 100 ratings as the testing set Xts,
and use the rest as training set Xtr. The set containing the
indexes of elements in Xts and Xtr is denoted as Sts and
Str, respectively. The networks and filter coefficients are only
trained on the training set. As a performance metric we use
the global root mean squared error (RMSE). User-based NNM
is used as benchmark algorithms. To get an estimate for the
regularization constant r used in (10), we perform cross-
validation by breaking the ratings in the training set into three
equally sized subsets.

Before we start to compare different approaches, the first
task is to assess the best performance that one can achieve
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with the setup at hand. To this end, we use the networks Bi

learned on the training set Xtr and learn the filter coefficients
by solving the problem in (10) using the testing set Xts

min
h

∑
(u,i)∈Sts

∣∣∣∣∣
[(

L∑
l=1

hlB
l
i

)
x̌i

]
u

− X̌u,i

∣∣∣∣∣
2

+ r‖h‖22. (11)

Since the coefficients above are biased towards the data in
Xts and all other schemes will be trained using Xts, the
performance achieved by (11) on Xts will serve as a benchmark
for all other schemes. The RMSE across ratings in the testing
set Xts using the h trained in (11) for different values of L
and r is presented in Table I. There are several interesting
observations. Firstly, the RMSE for both r = 0 and r = 0.5
decreases as the number of filter taps L increases from 1 to 6,
remaining flat for L > 6. This seems to imply that considering
chains of more than 6 users does not improve prediction
performance (recall U = 943 and k = 40). Secondly, the
RMSE with large L and r = 0 is around 0.80, which will
be the value considered as the benchmark for algorithm that
learn h in Xtr and test their performance in Xts. Finally, the
difference between RMSE for r = 0 and r = 0.5 is around
0.05, which represents an increase of approximately 6%.

When we solve the actual problem in (10) with coefficients
learned on the training set Xtr, we rely on the results in Table
I to limit the maximum number of taps to 6. The RMSE on
the testing set Xts for different values of L and r is presented
in Table II. The main observations are: i) higher order filters
perform better than the traditional order-one NNM (user-based
NNM attain an RMSE of 0.9116, while for L = 6 and r =
0.5 our method attains an error of 0.8551, which is 6.20%
smaller); and ii) the prediction performance, especially that for
the case where r = 0.5, is not much worse than that shown
in Table I, and the trends are also similar to those shown in
Table I. Moreover, when proper regularization is applied, the
optimal coefficients learned from the training set are also close
to the coefficients learned from the testing set.

Another interesting observation is that the optimal coeffi-
cients learned from either training set in (10) or testing set in
(11) tend to satisfy that

∑L
l=1 hl ' 1, as illustrated in Figure 2

(c). Such a property does not seem to depend on the number
of taps used in the filter. Recall that traditional user-based
NNM can be considered as a specific graph band-pass filter
with coefficients h1 = 1 and hl = 0 for any l 6= 1. Therefore,
this supports the idea that traditional user-based NNM is the
optimal design for a band-stop graph filter, if only filters with
one tap are considered.

To gain further insights, the frequency response for user-
based filter with L = 6 and h learned in Xtr is illustrated
in Figure 2 (b). The frequency response is highly similar
to the one of user-based NNM in Figure 2 (a), since both
of them are band-stop filters; however, there are two major
differences. Firstly, both the amplitude and the range for low
and high frequencies with high response in absolute value
increases. Secondly, the frequency response for high frequency
in Figure 2 (b) becomes positive, whereas the response for high

frequency in NNM is negative. The second point is potentially
the reason that designing filters by training filter coefficients
can improve RMSE by 6.10%. The two differences can be
considered as the advantages of designing filters to have a
more flexible form compared to NNM.

VI. CONCLUSIONS

This paper exploited results from graph SP to propose new
interpretations for RS methods. Our first contribution was to
show that CoFi can be considered as a specific band-stop
graph filter operating on the network describing similarities
between users or items. Leveraging this, we then proposed
a new method for RS using other types of graph band stop
filters. We also proposed a computationally efficient scheme
to design the parameters that define our methods and assessed
their performance in the MovieLens-100k dataset. The results
obtained showed that, compared to the benchmark approaches,
we reduced the RMSE by a rate of 6.20%. Relevant observa-
tions regarding how the networks are formed as well as on
filter coefficients and the corresponding frequency response
were also discussed. Future work would be to consider other
types of graph filters and to investigate matrix completion from
graph SP perspectives.
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