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Abstract—In this paper, we study the channel estimation
problem for a cyclic prefix OFDM (CP-OFDM) based millimeter
wave (mmWave) hybrid analog-digital MIMO system, where the
analog processing is achieved using only phase shift networks.
A three-dimensional (3-D) Standard ESPRIT in discrete Fourier
transform (DFT) beamspace approach is developed to estimate
the unknown frequency-selective channel. The required training
protocol, analog precoding and decoding matrices, as well as
pilot patterns are also discussed. Simulation results show that
the proposed 3-D Standard ESPRIT in DFT beamspace based
channel estimation algorithm provides accurate channel estimates
when there is a sufficient number of snapshots.

Keywords—MmWave Massive MIMO, hybrid precoding and
decoding, multi-dimensional harmonic retrieval, Standard ESPRIT
in DFT beamspace.

I. INTRODUCTION

Millimeter wave (mmWave) massive MIMO techniques
will not only gain from large chunks of underutilized spec-
trum in the mmWave band [1] but will also benefit from a
significantly reduced form factor of the massive MIMO array
[2]. However, one RF chain per antenna is impractical because
the involved power consumption and the hardware cost are too
high. To exploit the MIMO gain under a reasonable cost, one
promising solution is to deploy hybrid analog-digital precoding
schemes, realized using phase shifters or switches in the RF
domain [3], and digital precoding schemes, implemented in
the digital baseband domain as in conventional MIMO. If
analog precoding is achieved using phase shifters only, the
analog precoding matrix should have only constant modulus
entries [4], [5], [6]. Furthermore, when a wideband multi-
carrier system is considered, we have to use the same phase
shifts for all subcarriers [7]. These two constraints are stringent
so that they lead to significant challenges not only for the
precoding of the transmitted data but also for the required
channel estimation tasks [4], [5], [8]. When a frequency-
flat channel is considered, in [5] an adaptive compressed
sensing (CS) based channel estimation algorithm is proposed to
estimate the channel of a hybrid analog-digital massive MIMO
system. This CS based channel estimation algorithm has been
further extended in [9] by involving multiple measurement
vectors (MMV) to improve the channel estimation accuracy.
An adaptive multi-grid sparse recovery approach is applied
in [10]. For a frequency-selective channel we have proposed
multi-stage CS based channel estimation methods in [11] to
reduce the involved computational complexity. Unfortunately,

all the above CS based methods depend on the on-grid as-
sumption of the channel parameters, which requires a grid-
offset estimation for practical use. The grid-offset estimation
itself is already a challenging task. Although in [12] a gridless
CS mmWave channel estimation algorithm is developed based
on the gridless CS theory [13], the proposed algorithm is not
aware of the hardware constraint in a hybrid MIMO archi-
tecture and is only suitable for a one-dimensional estimation
problem, e.g., single-antenna terminals. Hence, this motivates
us to seek a gridless mmWave channel estimation method for
hybrid mmWave massive MIMO systems.

In this paper we develop a gridless channel estimation
algorithm for a hybrid point-to-point mmWave multi-carrier
massive MIMO system. A cyclic prefix OFDM (CP-OFDM)
based multi-carrier modulation scheme is used and training
using pilot tones is considered. The resulting channel esti-
mation problem is formulated as a three-dimensional (3-D)
harmonic retrieval problem with compressed measurements.
Inspired by the Unitary ESPRIT in DFT beamspace algorithm
in [14], we develop a 3-D standard ESPRIT in DFT beamspace
based channel estimation algorithm. When combined with
our proposed training design, which involves the design of a
training protocol, the analog precoding and decoding matrices,
and the pilot patterns, the proposed algorithm provides high-
resolution estimates of the spatial frequencies and subsequently
accurate channel estimates without the on-grid assumption.
Only a few training symbols are used during the estimation.
Simulation results also show that by using the proposed
channel estimation algorithm the achievable system sum rate
is only slightly affected in the low SNR regime.

Notation: Upper-case and lower-case bold-faced letters
denote matrices and vectors, respectively. The expectation,
transpose, conjugate, Hermitian transpose, inverse, and Moore-
Penrose pseudo inverse are denoted by E{·}, {·}T, {·}∗, {·}H,
{·}−1, and {·}+, respectively. The Euclidean norm of a vector
and the absolute value are denoted by ‖·‖ and |·|, respectively.
The Kronecker product and the Khatri-Rao product are denoted
as ⊗ and ⋄, respectively. The m×m identity matrix and the
exchange matrix are Im and Πm, respectively. The m × n
matrix with all zero elements is 0m×n.

II. PROBLEM FORMULATION

A. System Model

We study a point-to-point mmWave massive MIMO sys-
tem as in [11], where a base station (BS) transmits data
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to a multi-antenna user equipment (UE). The BS has MT

transmit antennas and NT RF chains. The UE has MR

receive antennas and NR RF chains. The number of RF
chains is assumed to be much smaller than the number of
antenna elements, i.e., MT ≫ NT and MR ≫ NR. A CP-
OFDM based modulation scheme is applied to combat the
multipath effect. The corresponding FFT size is Nfft. Let
sn[m] ∈ C

NT represent the transmitted pilot vector on the
n-th pilot subcarrier in the m-th OFDM symbol over NT RF
chains (n ∈ {k1, · · · , kNf

} ⊂ {1, · · · , Nfft}, p ∈ {1, · · · , Nf},
m ∈ {1, · · · , Nt}). Thereby, the training procedure consists of
Nt OFDM symbols each with Nf pilot tones. The pilot tones
and the data tones are interleaved on all subcarriers and then
passed through the IFFT filter. A CP of length NCP symbols is
added, followed by an RF precoder F [m] ∈ C

MT×NT using
analog circuitry. The transmit power of the training vectors

satisfies

kNf
∑

n=k1

‖F [m]sn[m]‖2 = Ppilot for all m.

We consider a frequency selective quasi-static block fading
channel. Assume that NCP has the same length as the max-
imum excess delay of the channel such that the inter-symbol
interference is avoided. After passing through the channel,
first, an RF decoder WH[m] ∈ C

NR×MR is used at the UE.
Afterwards, the CP is removed from the received signal. By
using the FFT filter the time domain signal is transformed
into the frequency domain. Let Hn[m] ∈ C

MR×MT denote
the discrete channel transfer function (CTF) on the n-th pilot
subcarrier in the m-th OFDM symbol of the UE. The received
training signal on the n-th pilot subcarrier in the m-th OFDM
symbol is given by [11]

yn[m] = WH[m]Hn[m]F [m]sn[m] +WH[m]zn[m],

where zn[m] represents zero mean circularly symmetric
complex Gaussian (ZMCSCG) noise with covariance matrix
E{zn[m]zH

n [m]} = σ2
nIMR

for all n and m. We assume that
the RF precoder and decoder are implemented using a network
of phase shifters. Hence, the matrices F [m] and W [m] contain
only unit modulus entries.

Our goal is to design W [m], F [m], and sn[m], ∀n,m,
such that the channel can be accurately estimated at the
receiver.

B. Channel Model

We consider uniform linear arrays (ULAs) at both ends.
Therefore, the array steering vector is a Vandermonde vector.
We define an M -element Vandermonde vector a(µ) as

a(µ) =
[

1 ejµ · · · ej(M−1)µ
]T

. (1)

Due to the lack of diffraction, a mmWave massive MIMO
channel is modeled using a finite number of scatterers, e.g., L
scatterers [15]. Each scatterer contributes to a single propaga-
tion path between the BS and the UE, which accounts for one
time delay τℓ and one pair of spatial frequencies (µT,ℓ, µR,ℓ)
for ℓ ∈ {0, · · · , L− 1}. The frequency domain representation
of the channel is given by [16]

H(f) =

L−1
∑

ℓ=0

αℓaR(µR,ℓ)a
T
T(µT,ℓ)e

−j2πτℓf , (2)

where αℓ denote the complex gain of the ℓ-th path. The vectors
aT(µT,ℓ) ∈ C

MT and aR(µR,ℓ) ∈ C
MR denote the array

steering vectors of the BS and the UE, respectively.

Let Ts = 1/(Nfft ·∆f) represent the sampling period and
∆f denote the subcarrier spacing. We model the sampled CTF
on the n-th subcarrier in the m-th OFDM symbol as

Hn[m] =
L−1
∑

ℓ=0

αℓ[m]aR(µR,ℓ)a
T
T(µT,ℓ)e

−j2πτℓ(n−1)∆f , (3)

Note that equation (3) implies that the angular-delay profile
remains unchanged while the complex channel gain might vary
during different OFDM symbol periods.

C. Proposed Training Protocol

In our training protocol we divide the total number of
Nt training OFDM symbols into κm training frames, each
consisting of NT OFDM symbols. That is, Nt = κm ·NT. We
assume that the channel gains αℓ[m], ∀ℓ are approximately
the same in each training frame whereas they are different
in different training frames, e.g., [12]. Under this assumption,
we will use the notation ακ,ℓ instead of αℓ[m] in the rest
of the paper. Furthermore, the same analog precoding and
decoding matrices are used in all κm training frames. Thus,
the indices m of F [m] and W [m] are dropped. The training
vector sn[m] ∈ C

NT in each frame is designed such that
Sn = [sn[1] · · · sn[NT]] ∈ C

NT×NT is a scaled orthogo-
nal matrix for all n. Note that more than NT OFDM symbols
in one frame can achieve the same goal, but at a cost of wasting
more training resources. The same training matrix Sn is used
in different frames. Therefore, by pre-multiplying SH

n from the
right-hand side of the received signal matrix of NT consecutive
OFDM symbols in each frame we obtain

Yn,κ = WHHn,κF + Z̄n,κ,

where κ ∈ {1, · · · , κm} and Z̄n,κ = WHZn,κS
H
n denotes

the effective noise, where Zn,κ ∈ C
MR×NT comprises NT

consecutive zn[m] in the κ-th frame. By vectorizing Yn,κ and
stacking them on top of each other for n ∈ {k1, · · · , kNf

} we
obtain

yκ = (ΦT ⊗ FT ⊗WH) · (Af ⋄AT ⋄AR) ·ακ + z̄κ, (4)

where Φ ∈ R
Nfft×Nf is a column selection matrix with ones

on the (kp, p)-th elements and zeros otherwise, and

AR = [aR(µR,0) · · · aR(µR,L−1)] ∈ C
MR×L

AT = [aT(µT,0) · · · aT(µT,L−1)] ∈ C
MT×L

Af = [af(µf,0) · · · af(µf,L−1)] ∈ C
Nfft×L

ακ = [ακ,0 · · · ακ,L−1]
T
∈ C

L

with µf,ℓ = −2πτℓ∆f . The vector z̄κ denotes the vectorized

version of the effective noise matrix
[

Z̄k1,κ · · · Z̄kNf
,κ

]

.
Borrowing the array signal processing terminology [17], we
see equation (4) corresponds to a single snapshot model.

We increase the number of snapshots by placing the yκ

next to each other, ∀κ. Finally, we get

Ȳ = (ΦT ⊗ FT ⊗WH) · (Af ⋄AT ⋄AR) · Γ+ Z̄, (5)
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where Γ = [α1 · · · ακm ] ∈ C
L×κm and Z̄ =

[z̄1 · · · z̄κm ] ∈ C
NfNTNR×κm . We set BR = FTAR ∈

C
NR×L, BT = WHAT ∈ C

NT×L, and Bf = Φ
TAf ∈

C
Nf×L. Then equation (5) is rewritten as

Ȳ = B · Γ+ Z̄ ∈ C
NfNTNR×κm , (6)

where B = Bf ⋄ BT ⋄ BR ∈ C
NfNtNR×L denotes a virtual

array steering matrix and equation (6) corresponds to a κm-
snapshot model.

III. STANDARD ESPRIT IN BEAMSPACE BASED

CHANNEL ESTIMATION

Let µℓ = [µR,ℓ, µT,ℓ, µf,ℓ]
T ∈ R

3 denote a tuple of 3-
D frequencies. Using the reformulation in (6) the channel
estimation task can be accomplished by firstly estimating the
3-D frequency vector µℓ and then the complex gain matrix Γ,
e.g., the LS estimate of Γ is given by Γ = B+Ȳ . Without
the compressed measurements in (6), the spatial frequency
estimation problem yields a 3-D harmonic retrieval problem
as in [17] problem and thus can be solved using the algorithm
in the same paper. Nevertheless, inspired by the Unitary
ESPRIT in DFT beamspace algorithm in [14], we develop a
3-D Standard ESPRIT in DFT beamspace to estimate spatial
frequency vectors µℓ, ∀ℓ. Similarly as other ESPRIT-type
algorithms, e.g., [17], the involved two major steps in our
algorithm are the estimation of signal subspace and solving
shift invariance equations. More precisely, we aim at designing
Φ, F and W as well as selection matrices Jx,i ∈ C

Msel,x×Nx

for i = 1, 2 and x ∈ {f,R,T} such that the following three
shift invariance equations exist

Jr,1BΦx = Jr,2B, r = 1, 2, 3, x ∈ {f,R,T}. (7)

The spatial frequencies to be estimated are contained in the
diagonal matrices Φx = diag

{[

ejµx,0 · · · ejµx,L−1
]}

, ∀x.
Similarly as in [17], the compound selection matrices Jr,i,
∀r, i, have Kronecker structures and are expressed as

J1,i = INf
⊗ INt

⊗ JR,i,

J2,i = INf
⊗ JT,i ⊗ INR

,

J3,i = Jf,i ⊗ INT
⊗ INR

. (8)

After the shift invariance equations are created, we compute an
orthonormal basis of the column space of B, which is denoted
by Us ∈ C

NfNTNR×L from the measurement matrix Ȳ . Then
we replace the unknown matrix B in (7) by Us, which yields

Jr,1UsΨx ≈ Jr,2Us, , r = 1, 2, 3, x ∈ {f,R,T}, (9)

where an eigendecomposition satisfies Ψx = T−1
ΦxT , ∀x.

Consequently, the eigenvalues of Ψx ≈ (Jr,1Us)
+Jr,2Us are

estimates of ejµx,ℓ , ∀x, ℓ. In this way the spatial frequency
vectors µℓ, ∀ℓ can be computed using the algorithm in [17] and
an automatic pairing of the frequency estimates is achieved.
In Section III-A we discuss how to build the shift invariance
equations. In Section III-B we explain how to obtain the
orthonormal basis Us.

A. Building Shift Invariance Equations

Thanks to the Kronecker structure in (8), we can design
Jx,i for all dimensions separately such that

Jx,1BxΦx = Jx,2Bx, x ∈ {f,R,T}. (10)

When x = f , equation (10) can be achieved by setting kp =
p, i.e., Φ contains the first Nf columns of INfft

. Then Bf

becomes a reduced-dimensional version of Af . We can use
Jf,1 =

[

INf−1 0(Nf−1)×1

]

and Jf,2 =
[

0(Nf−1)×1 INf−1

]

,
when a maximum overlap is used [17].

The same design cannot be applied when x = R,T because
F and W must have constant modulus entries. Inspired by the
Unitary ESPRIT in DFT beamspace in [14], we propose to
construct FT and WH using NT and NR successive rows
of MT × MT and MR × MR DFT matrices, respectively.
By applying a similar manipulation as in [14] we have the
subsequent statement.

Lemma 1. When x = T,R and i = 1, 2, the shift invariance
equation (10) is fulfilled if Jx,i ∈ C

(Nx−1)×Nx , ∀x, i, is a
sub-matrix of Gx,i. Let 1 ≤ γmin,x ≤ Mx denote the starting
index. Then Jx,i comprises Nx − 1 consecutive rows and
Nx columns of Gx,i starting from γmin,x, ∀x, i. The matrices

Gx,i ∈ C
Mx×Mx are defined by

Gx,1 =

















1 −e−j 2π
Mx · · · 0 0 0

0 1 −e−j 2π
Mx · · · 0 0

...
...

. . .
. . .

...
...

0 0 0 · · · 1 −e−j 2π
Mx

1 0 0 · · · 0 −ej
2π
Mx

















and

Gx,2 =

















1 1 · · · 0 0 0

0 ej
2π
Mx −ej

2π
Mx · · · 0 0

...
...

. . .
. . .

...
...

0 0 0 · · · ej
(Mx−2)2π

Mx −ej
(Mx−2)2π

Mx

1 0 0 · · · 0 ej
(Mx−1)2π

Mx

















Proof: The proof is straightforward by following [14].

When Nx < Mx for x = T,R, the scope of the search,
i.e., the spatial sector specified by µx,ℓ, will be narrowed down
because each row of Jx,1 and Jx,2 relates to two successive
components of the DFT beamspace array steering vectors.
Following the discussion in [18], it can be derived that the
steering angles should fall in the region

µx,ℓ ∈ [γmin,x − 1, γmin,x +Nx − 2] ·
2π

Mx

, ∀ℓ.

B. Estimation of the signal subspace

When κm ≥ L, by directly applying the SVD on Ȳ we
can construct Us, i.e., the orthonormal basis of B, by using
the first L left singular vectors of Ȳ . However, a large κm

also implies a large number of training frames. To reduce the
number of training symbols, we propose to use the spatial
smoothing algorithm in [17] to extend the number of snapshots.
The spatial smoothing technique can be applied over three
dimensions separately. It increases the number of snapshots
by reducing the dimension of effective measurements. When
a DFT beamspace is considered, i.e., x = R,T, this also
leads to a reduced effective aperture of the spatial domain.
Therefore, we only apply the spatial smoothing along the
frequency domain.
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Similarly as described in [17], let us divide Nf virtual
sensors in the frequency domain into Lf subarrays, each
contains Msub,f = Nf − Lf + 1 elements. We define selection

matrices Jℓf ,1,1 = J̄
(Nf )
ℓf

⊗INT
⊗INR

, where ℓf ∈ {1, · · · , Lf}

and J̄
(Nf )
ℓf

=
[

0Msub,f×(ℓf−1) IMsub,f
0Msub,f×(Lf−ℓf )

]

∈
C

Msub,f×Nf . Using the definitions above we express the final
spatially smoothed data matrix as

Ȳss =
[

J1,1,1Ȳ · · · JLf ,1,1Ȳ
]

∈ C
Msub×Lv (11)

where Msub = Msub,fNTNR and Lv = Lfκm.

Lastly, we compute the SVD of Ȳss to obtain a new
orthonormal basis Us ∈ C

Msub×L, which consists of the
first L left singular vectors of J1,1,1Ȳ . The selection ma-
trix Jf,i in (8) should be adjusted to yield a dimension of
(Msub,f − 1)×Msub,f for i = 1, 2, when a maximum overlap
is considered. By using the proposed 3-D Standard ESPRIT in
DFT beamspace algorithm, the maximum number of resolvable
scatterers is

Lmax = min((Msub,f − 1)NTNR,Msub,f

· (NT − 1)NR,Msub,fNT(NR − 1), Lv). (12)

Remark 1. Note that it is also possible to extend other
high-resolution line-spectra estimation tools based on our
DFT beamspace principle, e.g., the MUSIC algorithm [19].
However, compared to ESPRIT-type algorithms, the MUSIC
algorithm yields a 3-D search and thus is computationally
much more expensive.

IV. SIMULATION RESULTS

The proposed 3-D Standard ESPRIT in DFT beamspace
based channel estimation algorithm is evaluated using Monte-
Carlo simulations. A total transmit power over all subcarriers
in one OFDM symbol is set to unity. The SNR is defined as
SNR = 1/(Nfftσ

2
n). The overall transmit power of the training

vectors is defined as Ppilot =
Nf

Nfft
and it is equally allocated

to Nf pilot tones in one OFDM symbol. We set Nfft = 64 and
L = 2. The channel gain αℓ, ∀ℓ, is ZMCSCG distributed with
∑L

ℓ=1 E{|αℓ|
2} = 1. Two training frames are used, i.e., κm =

2. When the sum rate of the system is evaluated, we consider
only Ndata = 2 active data subcarriers to be computationally
efficient. The inter-element spacing of the ULA is equal to
half of the wavelength. We set MT = 64, MR = 32, NT =
8, NR = 4, and Nf = 8 in the simulations. According to
the discussion in Section III-A, this setup corresponds to a
search region of approximately π/4 for both µR,ℓ and µT,ℓ,
∀ℓ. Therefore, in our simulations we set µx,ℓ ∈ (0, π/4) for
x = R,T, ∀ℓ. We investigate the performance of the estimation
algorithm for both spatial frequencies and the channel. For the
former one the mean squared estimation error (MSE) is used
as the criterion, i.e.,

MSE =
1

3L
E

{

3
∑

r=1

L−1
∑

ℓ=0

(µx(r),ℓ − µ̂x(r),ℓ)
2

}

.

Let us define hκ = (Af⋄AT⋄AR)·ακ. The channel estimation
performance is evaluated using the normalized mean squared
estimation error (NMSE), i.e.,

NMSE =
1

κm
E

{

κm
∑

κ=1

‖hκ − ĥκ‖
2

‖hκ‖2

}

.
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Figure 1. MSE of the spatial frequencies vs. SNR for different number of
virtual subarrays in the frequency domain.
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Figure 2. NMSE of the channel vs. SNR for different number of virtual
subarrays in the frequency domain.

The proposed 3-D Standard ESPRIT in DFT beamspace algo-
rithm is denoted as ”B-ESPRIT”. The simulation results are
obtained by averaging over 500 channel realizations.

As depicted in Figures 1 and 2 both the MSE and the
NMSE reduce when the number of virtual subarrays in the
frequency domain increases. Moreover, when the number of
virtual subarrays is fixed, the 3-D Standard ESPRIT in DFT
beamspace algorithm provides more accurate estimates of the
spatial frequencies than those of the channel. This advantage
might be exploited when the hybrid analog-digital design is
based on the spatial frequencies, e.g., [4]. Note that when
Lf = 1, i.e., the number of effective snapshots is equal to that
of spatial frequencies, the performance curve of the proposed
algorithm is not smooth. This phenomenon does not appear
when the number of effective snapshots increases. This implies
that to achieve a better performance we should have more
snapshots than the number of spatial frequencies.

To evaluate the achievable sum rate of the system with
estimated channel state information (CSI), we apply the chan-
nel matching based hybrid design as described in [11] and
[6]. Since our focus is on the effects of imperfect CSI rather
than the overall system spectral efficiency, the demonstrated
sum rate in Fig. 3 accounts only for the data transmission
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Figure 3. Achievable sum rate vs. SNR when the channel matching based
design in [6] is used and there are Nss = 2 spatial streams.

phase, during which the analog as well as digital precoding
and decoding schemes are modified according to the channel
matching based hybrid design and the estimated CSI. The
achievable sum rate increases when the number of virtual
subarrays increases. But the performance difference under
different simulation settings is obvious only in the low to
medium SNR regime.

V. CONCLUSION

A gridless 3-D Standard ESPRIT in beamspace based
channel estimation algorithm has been proposed to estimate
the CSI of a hybrid mmWave massive MIMO system. The
required training protocol, analog processing as well as pilot
patterns have been discussed and developed. Simulation results
show that the proposed 3-D Standard ESPRIT in beamspace
algorithm provides accurate estimates of both the CSI and
the spatial frequencies using only a few training symbols
especially when combined with spatial smoothing technique.
Moreover, the channel estimation error only slightly affects the
achievable sum rate when the channel matching based hybrid
design is applied.
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Esposti, H. Hofstetter, P. Kyösti, D. Laurenson, G. Matz, A. F. Molisch,
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