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Abstract—A novel solution of the inverse Frobenius–Perron
problem for constructing semi–Markov chaotic maps with pre-
scribed statistical properties is presented. The proposed solution
uses recursive Markov state disaggregation to construct an
ergodic map with a piecewise constant invariant density function
that approximates an arbitrary probability distribution over
a compact interval. The solution is novel in the sense that
it provides greater freedom, as compared to existing analytic
solutions, in specifying the autocorrelation function of the semi–
Markov map during its construction. The proposed solution
is demonstrated by constructing multiple chaotic maps with
invariant densities that provide an increasingly accurate approx-
imation of the asymmetric beta probability distribution over the
unit interval. It is demonstrated that normalised autocorrelation
functions with components having different rates of decay and
which alternate in sign between consecutive delays may be
specified. It is concluded that the flexibility of the proposed
solution facilitates its application towards modelling of random
signals in various contexts.

I. INTRODUCTION

Signal processing systems, in general, are required to pro-
cess signals that are affected to a certain extent by random
phenomena. Examples of these systems include communica-
tion systems and radar receivers that process an active signal
component containing unknown information, corrupted by ran-
dom signals arising from noise, interference and clutter. The
accurate modelling of these random signals is a requirement
for developing appropriate and effective techniques for their
processing. Accurate models of random signals facilitate im-
proved statistical inference based on the observation of signal
samples, as well as more accurate prediction and tracking of
signals and improved control of physical systems. Hence, the
development of accurate random signal models is of funda-
mental importance to many signal processing applications.

Chaotic dynamical systems have been used to model random
signals encountered in various contexts [1]–[3]. The trajecto-
ries of these nonlinear systems (i.e. the evolution of the system
state over time) appear random due to their unpredictable
and erratic nature, which is a consequence of the systems’
sensitivity to the initial state. Nonlinear maps with relatively
simple structure may exhibit complex dynamical behaviour
and hold potential for accurate random signal modelling [4].

For ergodic chaotic maps, there exists at most one state
probability distribution that is invariant under repeated appli-
cation of the map. The computation of the invariant probability
density function (PDF) of an ergodic map is referred to as
the Frobenius–Perron (FP) problem. Whereas the solution of
the FP problem is relevant to the analysis of chaotic maps,
the solution of the inverse FP problem, which addresses
the derivation of a chaotic map with a prescribed invariant
distribution, may be used as a starting point for modelling
random signals.

In constructing a chaotic dynamical system to model a
discrete–time random signal, it is of interest to specify both the
invariant probability distribution associated with the system
state as well as the time autocorrelation function (ACF)
corresponding to state trajectories. It was shown that the ACF
of an ergodic chaotic map may be expressed, in general, as a
linear combination of weighted component functions, where
the component functions are determined by the eigenvalue
spectrum of the corresponding FP operator (i.e. the operator
which characterises the evolution of the state’s PDF over
time) [5]. Whereas typical solutions to the inverse FP problem
only provide a means for constructing a chaotic map with
a prescribed invariant PDF, certain analytical solutions that
provide limited control over the ACF have been proposed [6]–
[8]. However, to the best of the authors’ knowledge, no solu-
tion that facilitates the direct specification of the component
functions that comprise the ACF has yet been proposed.

This paper presents a novel analytic solution of the in-
verse FP problem for approximating an arbitrary probability
distribution over a compact interval. The proposed solution
provides greater freedom than existing solutions in specifying
the ACF of the chaotic map during its construction. The
solution considers the construction of piecewise linear and
ergodic maps that belong to the class of semi–Markov maps.
It is demonstrated that the design of a semi–Markov map with
prescribed invariant PDF may be formulated as a problem of
designing a Markov chain, where the transition matrix of the
Markov chain partly determines the statistical properties of
the resulting chaotic map. The Markov chain is designed by
recursively disaggregating (or ‘splitting’) the states of an initial
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Markov chain and by iteratively recomputing the transition
matrix in a particular fashion. The advantage of using this
process is its flexibility in allowing for the selection of the
transition matrix eigenvalue spectrum, thereby providing a
means for specifying the component functions of the map ACF.

The flexibility of the proposed solution of the inverse
FP problem is demonstrated by constructing multiple semi–
Markov chaotic maps with invariant PDFs that provide an
increasingly accurate approximation of the asymmetric beta
probability distribution over the unit interval. It is demon-
strated that, through the selection of suitable eigenvalue spec-
tra, ACFs with varying rates of decay and which consist of
both positive and oscillating component functions may be
realised, while maintaining the same invariant PDF.

The remainder of this paper is set out as follows. In section
II, an overview of prominent solutions to the inverse FP
problem for constructing semi–Markov maps, as well as those
solutions that provide control over the ACF, is provided.
The proposed solution is described in section III, which is
followed by a presentation of simulation results in section IV.
Conclusions are drawn at the end of the paper.

II. LITERATURE REVIEW

Gora and Boyarsky [9] considered the inverse FP problem
for constructing chaotic maps with prescribed invariant PDFs
that are piecewise constant. A constructive proof for the
existence of piecewise linear and expanding semi–Markov
maps with arbitrary piecewise constant invariant PDFs was
provided. The properties of piecewise linear semi–Markov
maps facilitate the representation of the FP operator as a
matrix, referred to as the FP matrix. The construction of the
map involves the derivation of a three–band FP matrix, and
the subsequent construction of the map from the FP matrix,
without taking the ACF into account during the design of the
map. This solution was recently generalised to the construction
of M–band matrices, where M > 3 [10].

Rogers et al. [3] proposed a technique for constructing
semi–Markov chaotic maps with prescribed invariant PDFs
that are piecewise constant. This technique constructs the
map directly from an N–by–N FP matrix with a predefined
structure, which is fully specified by a set of 2N parameters.
The structure of the FP matrix leads to a simplified analytic
expression for the Perron eigenvector (i.e. the eigenvector
associated with the unity eigenvalue), which coincides with
the invariant density of the map. It is demonstrated how a
suitable choice of parameters allows for the selection of an
arbitrary piecewise constant PDF. The influence of parameter
selection on the rate of decay of the ACFs was investigated, but
the analysis is limited to positive ACFs, and no technique for
specifying individual ACF component functions is provided.

Diakonos et al. [11] proposed a stochastic algorithm for
generating unimodal maps with prescribed invariant PDF and
ACF. Whereas this proposed technique provides a large degree
of flexibility in specifying the ACF, it is computationally
intensive. Furthermore, in contrast to analytic solutions of the

inverse FP problem, the technique may fail to converge or
produce an accurate solution.

Baranovsky and Daems [6] considered the design of chaotic
maps with prescribed invariant distributions and ACFs. The
technique involves the design of an initial piecewise linear
map with uniform invariant PDF and a predistorted ACF.
The required map is subsequently obtained via a conjugation
transformation. Whereas the technique allows for the construc-
tion of initial maps with ACFs having richer properties as
compared to Markov maps, the proposed technique is limited
in that it only allows for the selection of conjugate map ACFs
with a restricted form (i.e. the conjugate map’s normalised
ACF at delays τ ≥ 1 is necessarily equal to the initial map’s
normalised ACF at delay τ = 1, raised to the τ th power).

Nie and Coca [7], [8] proposed a technique for constructing
piecewise linear semi–Markov maps that approximate the
evolution of an unknown system from a sequence of PDFs
generated by the system. Whereas the proposed technique
is able to capture the dynamical behaviour of the system, it
requires the generation of PDFs by selecting the initial state
of the system, which is not possible in certain contexts.

III. METHOD

In this section, several definitions and preliminary results
related to the chaotic maps of interest are provided. This is
followed by a description of the proposed solution of the
inverse FP problem.

A. Definitions and preliminary results

Consider a nonlinear map S : I → I, where I = [a, b]
denotes a compact interval of the real line. Let S be mea-
surable and nonsingular with respect to the Borel σ–algebra
on I and the normalised Lebesgue measure. Furthermore, let
X0 denote a random variable (RV) on I with an absolutely
continuous distribution and PDF f0. The evaluation of the
map S according to the expression Xi+1 = S(Xi), for
i ∈ {0, 1, . . .}, produces a sequence of RVs {X1, X2, . . .}
with corresponding PDFs given by fi+1(x) = PS [fi(x)]. In
this expression, PS is the Frobenius–Perron (FP) operator
associated with the map S [12]. If the PDF fi associated with
the RV Xi asymptotically converges to a unique invariant PDF
f∗S(x) such that f∗S(x) = PS [f∗S(x)], then S is ergodic.

In the remainder of this paper, ergodic chaotic maps S
with unique invariant densities and that belong to the class of
semi–Markov maps are considered. Semi–Markov maps [9],
which constitute a superset of the class of Markov maps, are
defined in what follows. Let Q = {Q1, Q2, . . . , QN} denote
a partition of I = [a, b] into N nonoverlapping intervals, such
that Qn = [qn−1, qn) for n = 1, 2, . . . , N−1, QN = [qN−1, b]
and q0 = a. A map S belongs to the class of Q–semi–Markov
maps if there exist disjoint intervals R(n)

j such that, for any
n = 1, 2, . . . N , Qn = ∪k(n)j=1R

(n)
j , S|

R
(n)
j

is monotonic, and

S(R
(n)
j ) ∈ Q. It was proved in [9] that the invariant PDF

f∗S of a piecewise linear and expanding Q–semi–Markov map
(i.e. a map where S|

R
(n)
j

is linear with a slope having an
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absolute value greater than unity, for all n = 1, 2, . . . N and
j = 1, 2, . . . k(n)) is piecewise constant on the intervals of Q.

Consider the restriction of the FP operator of a piecewise
linear and expanding Q–semi–Markov map S to the space
of functions constant on the intervals of Q. Furthermore, let
PDFs with domain I that belong to this space be represented
by row vectors f of length N , such that each vector element
equals the constant value of the PDF over the corresponding
interval of Q. This restriction facilitates the representation
of the FP operator PS as an N–by–N matrix PS , which is
referred to as the FP matrix of S, such that f i+1 = f iPS .
The invariant density f∗S corresponding to the map S is
the left eigenvector of the matrix PS that corresponds to
the eigenvalue of unity (this follows from the expression
f∗S = f∗SPS). The FP matrix PS = [Pi,j ]i,j=1,2,...,N may
be derived from its corresponding Q–semi–Markov map by
setting Pi,j = |(S|

R
(i)
k

)′|−1 if S(R
(i)
k ) = Qj , and setting

Pi,j = 0 otherwise.
Consider any N–by–N stochastic matrix P (i.e. a matrix

with elements restricted to the interval [0, 1], and with rows
that sum to unity). Gora and Boyarsky [9] proved the existence
of a piecewise linear and expanding semi–Markov map defined
over the N–interval uniform partition U of the interval I,
such that the FP matrix associated with the map is equal to
the stochastic matrix P. An algorithm for constructing a U–
semi–Markov chaotic map with this property is provided in [9]
(proposition 1); this algorithm is a component of the proposed
solution to the inverse FP problem. For the sake of brevity, this
algorithm is not repeated here.

This section is concluded with the characterisation of the
ACF of a piecewise linear and expanding U–semi–Markov
map with an irreducible stochastic FP matrix PS that has
distinct eigenvalues and is aperiodic. The normalised ACF
φ(τ), for integer τ > 0, may be approximated as

φ(τ) ≈
N∑
n=1

bn exp[(ln(|λn|) + i arg(λn))τ ], (1)

where bn is a function of the eigenvectors of the FP matrix
PS and the midpoints of the intervals in U , λn denotes the
nth eigenvalue of the FP matrix PS , and i ,

√
−1. In general,

the FP matrix may have both real and complex eigenvalues,
where λ1 = 1 and |λn| < 1 for all n = 2, . . . , N . Eq. 1 reveals
that the normalised ACF is a linear combination of oscillating
and exponentially damped component functions. The rate of
decay of each component is determined by the magnitude
of the corresponding eigenvalue, whereas its frequency of
oscillation is determined by the argument of the corresponding
eigenvalue.

B. Proposed solution of the inverse FP problem

The proposed technique addresses the construction of a
piecewise linear and expanding semi–Markov chaotic map
S : I → I with piecewise constant invariant PDF f∗S
that is an approximation of a prescribed PDF fR defined
over the compact interval I. This is achieved by constructing

an initial piecewise linear and expanding U–semi–Markov
chaotic map S′ : I → I with invariant PDF that is uniform
over the N equal–length intervals of U . A piecewise linear
homeomorphism H is defined, where H maps the intervals in
Q that correspond to the N intervals between the quantiles
of fR to the corresponding uniform intervals of U . It follows
that the conjugate map S, defined as S = H−1 ◦ S′ ◦ H , is
associated with an invariant PDF that approximates fR.

The proposed construction of the initial map S′ requires
the derivation of a stochastic matrix P with an appropriate
eigenvalue spectrum and a left eigenvector that is associated
with the unity eigenvalue, and that corresponds to the uniform
invariant density over the interval I. The piecewise linear and
expanding U–semi–Markov chaotic map S′ is subsequently
constructed using the algorithm in proposition 1 of [9], such
that its FP matrix PS′ equals P (recall that the stochastic
nature of the matrix P ensures the existence of an appropriate
semi–Markov chaotic map S′). The stochastic matrix P is
derived via the recursive Markov state disaggregation process,
which facilitates the selection of the eigenvalues of the FP
matrix PS′ of the map S′. The Markov state disaggregation
process, together with the definition of the homeomorphism
H , are presented in what follows.

1) Recursive Markov state disaggregation: The problem of
deriving an appropriate stochastic matrix P may be formulated
as a problem of designing a Markov chain with a transition
matrix equal to P. Markov state disaggregation (MSD) [13]
is used in a recursive fashion to design a Markov chain with
the required transition matrix. The original MSD process of
[13] defines transition probabilities in a structured manner
that facilitates control over the stationary distribution of the
resultant Markov chain, as well as the eigenvalue spectrum
of its transition matrix. The disaggregation process that is
described and used in this paper is a special case of the
original process that sacrifices some flexibility in selecting the
stationary distribution for greater flexibility in selecting the
eigenvalue spectrum of the transition matrix, which in turn
provides greater flexibility in specifying the ACF component
functions of the initial chaotic map S′.

MSD is a process whereby a specified state sk of an
existing N–state Markov chain is replaced with two new
states sk,1 and sk,2 (i.e. the original state is disaggregated),
thereby producing a resultant (N + 1)–state Markov chain.
The process defines new probabilities for transitions to and
from the states. The resultant Markov chain has two properties.
First, the stationary probabilities of those states that were not
disaggregated remain unchanged. The new states sk,1 and sk,2
of the resultant Markov chain have stationary probabilities that
satisfy p(sk,1) = p(sk,2) = p(sk)/2. Second, the transition
matrix of the new Markov chain has the same eigenvalues
as that of the original Markov chain, in addition to a new
eigenvalue λ which is prescribed at the start of disaggregation.
The choice of eigenvalue is restricted to a real value such that
|λ| ≤ Pk,k, where Pk,k is the self–transition probability of sk.

MSD is described by defining a disaggregation operator
Gk,λ on transition matrices of Markov chains, where k denotes
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the state that is to be disaggregated, and λ denotes the
eigenvalue to be inserted into the matrix. Consider a case
where the Markov chain pertaining to the transition matrix

P =

 P1,1 cT1,k P1,2

rk,1 Pk,k rk,2
P2,1 cT2,k P2,2

 (2)

is to undergo disaggregation. The operator Gk,λ produces a
new transition matrix according to the expression

Gk,λ[P] =


P1,1 cT1,k/2 cT1,k/2 P1,2

rk,1 B
rk,2

rk,1 rk,2
P2,1 cT2,k/2 cT2,k/2 P2,2

 , (3)

where

B =
Pk,k
hmax

(
1/2 hmax − 1/2

hmax − 1/2 1/2

)
(4)

and hmax , Pk,k/(Pk,k + λ).
A Markov chain with a uniform stationary distribution and

a prescribed transition matrix eigenvalue spectrum is derived
via recursive application of MSD. Starting with the elementary
single–state Markov chain, the states of the Markov chain are
recursively disaggregated until a predefined number of states
are obtained. Disaggregation is carried out in M rounds. Dur-
ing round m, where m = 1, 2, . . .M , each of the 2m−1 states
of the Markov chain at the end of round m−1 is disaggregated,
producing a Markov chain with 2m equiprobable states at the
end of round m.

2) Derivation of the homeomorphism H: A piecewise
linear homeomorphism H is derived such that the invariant
PDF of the conjugate map S = H−1 ◦ S′ ◦ H approximates
a prescribed PDF fR over the compact interval I. Let H
map the intervals of a partition Q = {Q1, Q2, . . . QN} of
the interval I to the corresponding intervals of the uniform
partition U = {U1, U2, . . . UN} according to the expression

H|Qn
(x) = un−1 +

[
un − un−1
qn − qn−1

]
(x− qn−1). (5)

It can be shown that, by selecting the intervals of Q to
coincide with the N intervals between the quantiles of the
prescribed distribution function FR, a piecewise linear approx-
imation of the prescribed distribution is obtained. Specifically,
the values of qn, n = 1, 2, . . . N , are selected such that
qn = {q : FR(q) = n/N}. Furthermore, it can be shown that
the eigenvalues of FP matrices PS and PS′ are equal; hence,
the ACF component functions of the maps S and S′ are iden-
tical (the same does not hold, in general, for the component
weights and the overall ACFs).

IV. RESULTS

The proposed solution to the inverse FP problem was
used to construct chaotic maps with invariant distribu-
tions that approximate the beta(α, β) distribution with PDF
fR(x) = xα−1(1− x)(β−1)/B(α, β), where x ∈ [0, 1] and
B(α, β) = Γ(α)Γ(β)/Γ(α + β). In these expressions, α and

Fig. 1. PW(4) PDF approximation to the beta(2,3) distribution from set V1.

Fig. 2. PW(5) PDF approximation to the beta(2,3) distribution from set V1.

β denote the two shape parameters of the beta distribution,
and Γ denotes the gamma function. Values of α = 2 and
β = 3, corresponding to an asymmetric beta distribution, were
considered. The PDF fR(x) is plotted in Figs. 1 and 2.

A set V1 of chaotic maps of order M = {3, 4, 5, 6} were
constructed using the proposed technique, thereby obtaining
successive piecewise approximations to the beta distribution
with improving accuracy (a map of order m is defined over 2m

intervals). Trajectories of 106 samples were generated for each
map, starting with a randomly selected initial state. Figs. 1 and
2 present estimates of the piecewise constant invariant PDFs of
the maps of orders 4 and 5 (denoted by PW(4) and PW(5)),
as constructed from histograms. The figures reveal that the
estimates provide a closer fit to the PDF of the beta distribution
as the map order increases, and that the fit is closer around the
mode of the distribution, as compared to the interval endpoints.

To illustrate the technique’s flexibility in providing control
over the ACF (and, in particular, the ability to specify the
ACF component functions), three additional sets V2 to V4 of
maps of order 5 were designed. The maps of these sets were
designed by inserting FP matrix eigenvalues according to the
expression λ(i) = (−1)zγP(i,i), where λ(i) denotes the ith
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Fig. 3. ACF estimates of the PW(5) approximations to the beta(2,3)
distribution from set V2.

inserted eigenvalue in a particular matrix, P(i,i) denotes the
self–transition probability of the ith disaggregated state, and
the scaling factor γ ∈ (0, 1) determines the rate of decay of
the corresponding ACF component (refer to eq. 1). For maps
in V2 and V3, respective values of z = 0 and z = i were
selected, producing in the respective cases FP matrices with
positive eigenvalues and FP matrices with both positive and
negative eigenvalues. For maps in V4, the first two inserted
eigenvalues were selected as γ and −(γ − 0.1) respectively,
in order to illustrate the effect of competing ACF components
with different characteristics. The remaining eigenvalues for
these maps were chosen in the same manner as for V3.

The empirical ACFs corresponding to the chaotic maps
of V2 to V4, as obtained from the observed trajectories,
are provided in Figs. 3 and 4. Fig. 3 reveals that positive
ACF component functions with different rates of decay were
realised. It is observed from Fig. 4 that the ACFs of maps in V3
alternate between positive and negative values over successive
delays, due to the negative FP matrix eigenvalues. Further-
more, due to the presence of two competing components that
correspond to positive and negative eigenvalues, the ACFs of
maps in V4 oscillate around a slowly decaying mean value.

V. CONCLUSIONS

An analytic solution to the inverse FP problem for con-
structing piecewise linear and ergodic semi–Markov maps with
invariant distributions that approximate arbitrary distributions
over compact intervals was presented in this paper. The
technique for constructing these maps allows for the selection
of the distribution that is to be approximated, while providing
greater freedom than existing techniques in specifying the ACF
of trajectories generated by the map. The technique is novel in
that it facilitates the selection of the ACF component functions
associated with the map.

The proposed technique was demonstrated by constructing
chaotic maps with piecewise constant invariant PDFs that
closely approximate the asymmetric beta distribution, and

Fig. 4. ACF estimates of the PW(5) approximations to the beta(2,3)
distribution from set V3 (solid blue lines) and V4 (dashed red lines).

with ACFs that exhibit different rates of decay and distinct
behaviour, as manifested by multiple component functions
with different characteristics. The accuracy and flexibility of
the proposed technique allows for more accurate modelling of
random signals, as encountered in signal processing systems.
Improved modelling of random signals facilitates more accu-
rate prediction and tracking of these signals. Hence, it is of
importance to a wide range of signal processing applications.
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