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Abstract—We  examine  the  signal  and  the  attributes  of
mosquitoes’ wingbeat.  Subsequently  we  carry  on  large-scale
classification  experiments  based  on  optical  recordings  of
mosquitoes’ wingbeat  of  the  following  species:  Aedes  aegypti,
Aedes albopictus, Anopheles arabiensis, Anopheles gambiae, Culex
pipiens,  Culex  quinquefasciatus.  We  report  96%  classification
accuracy  on  the  species  level  for a  database  of  279,566  flight
recording  cases  using  top-tier  deep  learning  techniques.  The
database  and  the  associated  code  are  offered  open.  The  long-
standing  goal  is  to  run  prediction  models,  perform  risk
assessments, issue warnings and make historical analysis based
on  wingbeats  acquired  through  suction  traps  deployed  in  the
field.

Keywords—wingbeat, smart traps, deep learning, Culex

I. INTRODUCTION

Mosquitoes infected with bacteria, viruses or parasites may
transmit diseases to humans and livestock. Serious diseases and
pathogens  that  can  be  transmitted  by  mosquitoes  include:
malaria,  West  Nile  virus,  Zika  virus,  chikungunya,  yellow
fever,  dengue,  lymphatic  filariasis,  and  many  forms  of
encephalitis. It has been reported that nearly 700 million people
get a mosquito borne illness each year resulting in greater than
one million deaths [1].

Prevention of the vector borne diseases is best achieved by
vector  control  which,  today  in  Africa,  relies  on  the  use  of
insecticides.  Surveillance  and  monitoring  mosquito  vector
populations is  an integral  component  of  most vector  control
programs and a prerequisite for effective interventions.

Public  Health  departments  establish  comprehensive
surveillance  and  control  programs  based  on  mosquito  traps.
Due  to  the  worldwide  spread  of  invasive  mosquitoes  and
mosquito-borne  pathogens  many surveillance  programs  have
been  applied  that  include  a  monitoring  stage  using trapping
devices  [2-5].  A major limitation of current  surveillance and
monitoring of  mosquito vectors  is  the  lack  of  an  automated
reporting service of the number and species composition of the
captured insects [6]. Manual counting requires highly qualified
personnel and is tedious as the pest manager must cover long
distances  since traps  are  dispersed at  large  spatial  scale  and
located in not always easily reachable areas. Manual inspection
of  dispersed  traps  can  increase  the  cost  of  the  surveillance
program or induce compromises in its design. 

There  are  some  attempts  to  automatize  the  flow  of
information  and  decision  process  on  mosquito  species
identification and estimation of  their  age via remote  sensors
and geographic information system (GIS) analyses, but most of
these technologies are still in the research stage [7-9]. A device,
called  the  BG-Counter,  which  automatically  differentiates
mosquitoes from other insects entering a trap, counts them, and
wirelessly transmits the results to a cloud server has recently
been commercially available by Biogents AG [10-11]. The BG-
Counter allows to remotely measure the dynamics of nuisance
caused  by  mosquito  populations  to  apply  mosquito  control
measures more focused in time and space.  The following step
is to be able to differentiate mosquito genera or species. 

The first  and most important  step in the development  of
new  traps  endowed  with  the  capability  of  discriminating
mosquito  species  is  therefore  to  evaluate  with  carefully
designed,  large-scale  experiments  the  quality  of  the
discriminative information the wingbeat bears. The aim of this
paper  is  to  validate  the  classification  accuracy  that  can  be
achieved from optical sensors involving six mosquito species
from the three most important genera making it, to the best of
our knowledge,  the largest  reported experiment  on mosquito
species classification based on wingbeats. Optical sensors are a
promising  alternative  technology  to  microphones/ vision/
multispectral  cameras  for  the task of  discerning  species  and
sex. The wingbeat recording is based on measuring the light
amplitude variation from an emitter to a receiver as the insect
flying partially occludes the light path with its flapping wings
[12-13]. Deep learning (DL) techniques currently revolutionize
the way machine learning is applied [14-15]. In this work we
use  advanced,  top-tier  DL architectures  that  are  adapted  to
encompass  the  1D  nature  of  the  wingbeat  recording.  The
outcome is highly successful  and embeddable in commercial
mosquito traps.

II. DATASET & SIGNALS

A. Recordings Acquisition

The recordings of the database took place at Biogents in
Regensburg Germany, in a mosquito breeding establishment at
approximately  26-27  oC  and  53-74%  humidity  for  all
experiments.  Counting from the time of being able to fly all
species were 3-10 days old. We placed 200-300 adult insects of
both sexes strictly of a single species in cages and the recording
of  their  wingbeat  occurs  the  moment  they  pass  through the
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rectangle of the sensors on a random basis [12-13]. This setting
allows us to take effortless  and secure  recordings  of a  large
number of flight cases in a practical way, even for quarantine
pests, as insects are generally difficult to handle in free-flight
experiments. We place  the same sensor in each cage holding
only a single species, in turn and we pick-up several thousands
of recordings from the SD card of the device after a day and
was recorded using the optical device referenced in [13]. Each
snippet has a length of 5000 samples at a 8KHz sampling rate.
The details of the ‘Wingbeats’ database are depicted in Table I.

TABLE I. WINGBEATS DATABASE

Species #recs

Ae. aegypti 85553

Ae. Albopictus 20231

An. Gambiae 49471

An. Arabiensis 19297

Cu. pipiens 30415

Cu. quinquefasciatus 74599

Total 279566
Train (80% total) 223652
Test (20% total) 55914

B. The wingbeat signal

In Fig. 1 you see a typical example of a wingbeat snippet. The
mosquito  performed  a  free  flight.  One  can  discern  a  high
frequency signal superimposed on a low frequency signal. The
low  frequency  part  is  due  to  the main  body  movement,
whereas the high frequency is due to the wingbeat alone.

Fig. 1.  An optical recording of an Aedes aegypti wingbeat.

If Fig. 2 one can see the frequency content of the wingbeat
signal  through  the  Welch  power  spectral  density  (PSD)
estimation  method  set  to  average  the  PSD  of  256  sample-
chunks,  with  192  samples  overlap.  One  can  see  significant
power at the low frequencies close to 0 and up to 80 Hz. This
is due to the main body movement. An object falling of the
size  of  the  mosquito  would  also  have  power  around  these
frequencies. At around 550 Hz one can see the first peak. This
corresponds  to the wingbeating frequency of  the insect  (we
will  call  it  f0).  Note  that  the  harmonics  appear  at  integer
multiplies of the f0. The harmonic structure in practice, is not

very thin for two reasons: a) the signal is short in time and, b)
the insect performs manoeuvres and modulates its frequencies
as better seen in Fig. 3.

Fig. 2. The  frequency  content  of  a  wingbeat  signal.  The  main  body
movement is picked up at frequencies below 100Hz, the f0 is seen around 550
Hz and the harmonics at multiples of the f0.

Mosquitoes  in  particular,  are  capable  of  changing  their
higher  harmonics  during courtship [16]. In  Fig. 3  we see  a
spectrogram  of  the  same  wingbeat  (i.e.  the  frequency
composition of the wingbeat as it changes over time). One can
see the characteristic harmonic structure of the wingbeat and
the  modulation  of  the  harmonics.  In  the  recognition
experiments using Deep networks the 2D representation in the
form of a spectrogram  performed better probably because the
convolutional  filters  picked  up  the  frequency  modulated
patterns that cannot be picked up by the PSD representation of
Fig. 2 as PSD integrates over time.

Fig. 3. Spectrogram of the wingbeat signal. Notice the frequency modulation
present in the harmonic structure.

III. CLASSIFICATION EXPERIMENTS

In [17] we have shown that the generated optical fluctuations
modulated by the wingbeats of insects, though short in time,
offer enough information that can be used to discern species
adequately. One can get a variety of features out of a recording
but,  we  believe  that  the  unprocessed  spectrum  and  the
spectrogram containing the fundamental and its harmonics and
possibly certain  simple transformations of  it  (e.g.  frequency
pooling  through  a  filter-bank,  logarithmic  amplitude
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compression) are a  better  choice than estimating the  f0,  the
harmonics, and autoregressive features for this task. Note that
class labels are known for the entire dataset as each insectary
cage contains strictly insects of the same species and therefore,
daily recordings from each cage all receive the same label tag.
We  have  run  a  number  of  experiments  on  a  random  20%
holdout set. All experiments used the same random split. The
results are gathered in Table I. Raw samples means that the
time domain  recording  has  been  used  as  input  without  any
feature  extraction.  PSD stands for  a  129-dimensional vector
corresponding  to  the  log-power  of  the  frequencies  of  each
recording. Note that Raw samples as well as the PSD are 1D
signals.  Spectrogram  is  a  time-frequency  domain
representation  (the  FFT size  is  set  to  256 samples  and  the
hopping length to FFT_SIZE/6), therefore, a 2D signal. 
Regarding  data  augmentation,  we  randomly  roll  the  time
domain signal up to 15% of its length randomly left or right.
The results  out  of  a  number  of  approaches  are  gathered  in
Table  II.  Shallow learners  are  applied  directly  on the  PSD.
State of the art DL architectures are also applied and boost the
recognition performance up to 96%.

TABLE II. CLASSIFICATION RESULTS

Deep Learning architectures

Table column subhead Features (%) acc

DenseNet121 Spectrogram 96

5 layer CNN+ PSD 92.1

5 layer CNN+ Raw samples 91.2

InceptionV3 Spectrogram 95.20

MobileNet Spectrogram 95.62

Xception Spectrogram 92.18

NASNetMobile Spectrogram 94.85

Shallow Learning approaches

XGBoost PSD 81.81

LightGBM PSD 82.4

+ Details of the architecture in the Appendix links

In Fig. 4 we present the confusion matrix for the DenseNet
case. There are three crucial point in this picture:

a)  The  structure  is  strongly  diagonal  indicating  that  the
confusion rates are small.

b) The classes are arranged so that by two, they belong to
the  same  genus  (i.e.  Anopheles,  Aedes,  Culex).  Notice  the
coloration in the sidebands of the confusion matrix inside each
genus. Most errors appear between species of the same genus.

c) Focus on the cases of Anopheles gambiae and Anopheles
arabiensis that  both belong to the Anophels gambiae complex
and  are  important  malaria  vectors  in  equatorial  Africa.  In
research  and  control  programs,  the  identification  of  what
species is present is often important. However, adults of both
species  are  morphologically  indistinguishable,  and  the
identification can currently only be performed on the molecular
level. In this dataset, we report for the first time that we were

able  to  discriminate  between An.  gambiae s.s.  and An.
arabiensis,  using an opto-acoustic analysis. Both populations
could be distinguished on a highly significant level.

Fig. 4.  Confusion Matrix of the DenseNet on the Species on a 20% hold out
set.  One  can  see  clearly  the  diagonal  structure  of  the  confusion  matrix
indicating relatively low confusion rates.

IV. CLUSTERING, ATTENTION & TRANSFER LEARNING

Using DL for classification comes along with the benefit of
a  powerful  toolkit  for  visualization,  namely:  clustering  of
features taken from intermediate layers and saliency maps, the
latter aiming at identifying the most visually distinctive parts in
a wingbeat spectrogram that affect classifier’s decision. 

A. Clustering 

We took a DenseNet121 trained on the Wingbeats database
and removed the last 2 layers.  A balanced subset out of the
20% holdout  set  excluded from the training of  the  CNN is
propagated  through the layers  of  the truncated DenseNet  to
predict features instead of classes. We then used t-SNE [18] to
compute a 2-dimensional embedding of the predicted features.
t-SNE  arranges  wingbeats  that  have  a  similar  CNN  code
nearby in the embedding space. We visualize the embedding
and we demonstrate that the six wingbeat mosquito classes are
well separated and wingbeats belonging to the same species
cluster together (see Fig. 5). Although professional mosquito
traps  include  specific  attractants  (e.g.  CO2 and  specialized
scents) it is possible that a non-targeted flying insect species is
sucked  in.  Embedded  classifiers  will  tend  to  classify  the
flying-in  insect  in  their  predefined  classes.  Clustering  can
serve as a general outlier detector that detects strange incidents
outside clusters. The detection of atypical situations based on
non-conforming wingbeats with predefined clusters of targeted
insects reduces false counts.

B. Salience Mapping

There is a concern to find methods that quantify on which
grounds  the  CNNs  base  their  decision.  In  the  context  of
wingbeat  classification,  we need to  ensure  that  the decision
was based on the properties of the information bearing parts of
the spectrum. These parts are the lower frequencies close to
[0-100] Hz, the fundamental frequency corresponding to the
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wingbeat frequency of the insect (e.g. around 600 Hz for the
first figure on the left) and its harmonics (the almost parallel

Fig. 5. Clustering the wingbeat features produced by a DenseNet121 using t-
SNE. Six clusters for six mosquito species.

spectral  lines  at  integer  multiples  of  the  fundamental).  We
performed  an  experiment  where  we used  a  mixture  of  two
recordings from two different species (i.e. Ae. aegypti and An.
arabiensis, Fig. 6-left and middle figures). The spectrogram of
the mixture is Fig.6-right. We used Gradient-weighted Class
Activation  Mapping  (Grad-CAM)  [15]  to  visualize  which
regions of the spectrogram were important to the CNN and if
the  CNN  shifted  its  attention  to  different  parts  of  the
spectrogram given different target labels. Note, that the CNN
has  never  encountered  in  the  dataset  mixtures  of  different
species, as in each insectary cage there was only one species
of both sexes. Still, it clearly switched its attention conditioned
on the class label it was given. Grad-CAM receives as input
only the spectrogram of the mixture and given that we look for
an  Ae. aegypti it produces the Fig. 7-left, whereas, given the
mixture  and  the  fact  that  we  look for  an  An.  Arabiensis it
produces the figure Fig.7-right. Note the clear shift of attention

Fig. 6. Spectrograms. (LEFT) An Ae. Aegypti recording, (MIDDLE) An An.
Arabiensis recording, (RIGHT) Adding the samples of both recordings.

Fig. 7. Grad-weighted Class Activation Mapping for a mixture of recordings
from two species. When we change the given label, the CNN changes focus.

that can be verified by comparing the attention map to the
spectrogram of the original source.

C. Transfer Learning

Transfer learning or model adaptation in DL means that we
train a model using one database and we subsequently use this
model as the starting point to build a classification model on a
different task (i.e. using a different database).  The pretrained
model of the first task is typically derived after training on a
large database (e.g. ImageNet).  The model in the subsequent
task could be something more specific, not vastly represented
in the large database (e.g.  vision-based recognition of whale
species). Transfer learning is widely applied in deep learning to
refine models in several  applications.  It  works because deep
learning architectures have a modular layer composition where
the layers close to the input learn to extract low-level features
and  subsequent  layers  rely  on  the  previous  layer(s)  to
synthesize  patterns  of  higher  abstraction  (e.g.  starting  from
edges and textures and ending in objects). The last layers of a
DL net  decide  on  the  classes  to  be  classified.  In  transfer
learning  we  generally  keep  the  lower  levels  of  the  model
trained with the large dataset and discard the higher levels that
need to learn to classify the classes of the second dataset.

‘Wingbeats’ is  a  large database  derived from mosquitoes
performing free flight in cages. We want to use it for transfer
learning  on  different  sensors  and  species  that  are  not
encountered  in  this  specific  database.  There  are  several
important consequences of this experiment:

a)  Obviously,  in  a  specific  geographical  region only few
species of wingbeating insects co-exist. We would like to have
a  practical  approach  that  would  allow  us  to  build  region-
specific classifiers applicable to any place in the world.

b)  Labelled  wingbeat  recordings  coming  from  traps
installed in the field are hard to get. One can acquire them by
releasing insects in a room/tent with a suction trap that has the
appropriate  optical  sensor  inside  and  get  a  smaller,  local
database.

c)  Commercial  mosquito  traps  include  a  suction
mechanism.  This  means  that  mosquitoes  sucked  in  perform
forced  flight  in  contrast  to  the  Wingbeats  database  that  is
composed totally from free flight events.

d) The core idea is to use Wingbeats as a general-purpose
database for flying insects and adapt the models using a much
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lower number of forced flight wingbeat recordings taken from
the  specific  geographic  region  of  interest.  This  has  been
confirmed on a dataset not disclosed in Wingbeats.

e)  Once the  models  are  adapted  to  the local  species  the
weights  of  the  CNN  are  downloaded  in  a  raspberry  pi3
performing prediction is then embedded in commercial traps.
The traps are then transferred to the open field where they can
perform recognition in situ or transmit the wingbeat snippets to
a server where they are logged and classified.

We use a Densenet121 to be trained from scratch using an
open database of 10 insect species from UCR that is described
in Flying  Insect  Classification  Using  Inexpensive  Sensors
website.  We demonstrate  that  there is  a small  but  consistent
advantage if we pretrain on Wingbeats and refine on the UCR
database over training from scratch using the UCR database
(84.65% vs 84.12%).

V. DISCUSSION

Insect  Biometrics,  in  the  context  of  our  work,  is  a
behavioral  characteristic  of  flying  insects measured  by  light
intensity fluctuations.  Biometric  identifiers  are related to the
shape  of  the  body  (main  body  size,  wing  shape,  wingbeat
frequency, pattern movement of the wings).  We demonstrated
that  the recordings  of  optical  sensors  provide the quality  of
information to discriminate mosquito species.  DL techniques
are compatible with optical  recordings and demonstrate  high
classification rates. 
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