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Abstract—In this paper we investigate the task of estimating
carrier frequency differences from demodulated single sideband
signals by examining the pitch contours of the received base-
band speech signal in the short-time spectral domain. From
the detected pitch frequency trajectory and its harmonics a
carrier frequency difference, which is caused by demodulating
the radio signal with the wrong carrier frequency, can be deduced.
A computationally efficient realization in the power cepstral
domain is presented. The core component, i.e., the pitch tracking
algorithm, is shown to perform comparably to a state of the
art algorithm. The full carrier frequency difference estimation
system is tested on recordings of real transmissions over HF
links. A comparison with an existing approach shows improved
estimation accuracy, both on short and longer speech utterances.

Index Terms—Carrier Frequency Difference, SSB, Pitch Track-
ing

I. INTRODUCTION

The scenario at hand envisions a radio station listening
on a fixed, pre-selected frequency, and seeking for single
sideband (SSB) modulated high frequency (HF) signals. If
the receiver selects a different carrier frequency than the
transmitter, the demodulated signal contains a frequency shifted
version of the original speech signal originating from the carrier
frequency difference [1]. This has a detrimental effect on
the intelligibility of the transmitted speech signal [2]. Fig. 1
shows the spectrogram of a demodulated signal from a station
operating at a carrier frequency difference of 500 Hz compared
to the transmitter.

To improve intelligibility, the carrier frequency difference
should be estimated and the signal shifted in frequency to
remove the difference. This contribution is concerned with
the first task, the determination of the carrier frequency
difference from the demodulated speech signal. The second
task, the compensation, is rather straightforward and will not
be considered here.

A carrier frequency difference can be estimated by investi-
gating the statistical properties of speech, e.g., the modulation
symmetry [3] or the spectral envelope [4]. The contribution [3]
utilizes a third-order modulation spectral analysis that, however,
limits the analyzable spectrum to one-forth of its total width,
and [4] proposes a fundamental harmonic frequency detector
that requires relatively long speech segments for reliable
estimation in noisy conditions. Training based frequency offset
estimation has been proposed in [5], where GMM-SVMs, i-
Vectors and deep neural networks are employed. The main
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disadvantage here is the requirement of having a representative
and large enough data set for training, as HF transmissions
include a variety of distortions.

In this paper we follow the idea of [1, 4, 5]: By detecting the
typical pitch structures in the spectrogram, a possible carrier
frequency difference becomes apparent. Fundamental frequency
estimation, or pitch tracking, has been a research topic for
years with applications in signal enhancement and speaker
identification tasks. Various approaches are known from the
literature, e.g., RAPT [6], STRAIGHT [7], YIN [8] and YAAPT
[9]. Since most approaches are based on correlation techniques,
be it in the time [8] or frequency domain [7, 10] or even in both
domains [9], comparative studies show only small differences
between the algorithms in terms of precision [11] as they all
depend on similar features. Detecting candidates for periodic
signals within the physical range of the vocal cord’s oscillation
frequencies is usually the first step, which is followed by a post-
processing for candidate refinement and subsequent smoothing
[6, 9]. Besides time and frequency domain, also cepstral domain
estimators have been proposed [12]. Clearly, all methods suffer
from low signal-to-noise ratio (SNR) ratios [11] and robustness
to distortions is an important aspect. Here, new approaches
based on deep neural networks (DNNs) reported promising
results [13].

However, pitch tracking with the purpose of frequency
difference estimation poses different constraints compared to
the pure pitch tracking task, since in our scenario the pitch and
its harmonics are shifted by an arbitrary frequency, requiring
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Figure 1: Spectrogram of a signal transmitted over HF and
demodulated with 500 Hz carrier frequency difference. Marked
in black are the carrier frequency difference (dashed) and the
pitch traces including two harmonics.
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an open range search for all possible shifts.
The contributions of this paper are two-fold. First, we

introduce and discuss our new approach to carrier frequency
difference estimation named ”Rake”. It is based on accumulated
log-energy values and enables the classification on significantly
shorter segments of speech compared to existing approaches,
e.g., [4]. Second, an efficient implementation in the power
cepstrum domain is proposed to reduce the computational
demands of the approach. Finally, in the experiments we
evaluate the proposed algorithm on real SSB HF recordings and
also compare it to a state-of-the-art pitch tracking algorithm
and a frequency difference estimation algorithm.

The paper is organized as follows: In Sec. II our features for
carrier frequency difference estimation are derived, followed
by Sec. III where we discuss details of the implementation
in the power cepstrum domain. In Sec. IV and Sec. V the
experimental results are discussed. The paper ends by drawing
some conclusions in Sec. VI.

II. RAKE APPROACH

We are given a demodulated SSB HF signal, of which we
assume that it has already been pre-processed by a speech
activity detection unit, e.g., by the DNN-based approach from
[14], such that only segments with active speakers are regarded
in the following. Note, that these segments consist of voiced
and unvoiced speech, as well as short pauses. In the spectral
domain the pitch and its harmonics are clearly visible in a
spectrogram, if the Short-time Objective Intelligibility (STOI)
value [15] is above 0.5. However, many SSB transmissions have
much worse STOI values and the pitch contours are occluded
by noise or even completely erased, requiring noise robust
algorithms and approaches (visit [16] for example signals).

In the following we propose to estimate the carrier frequency
difference by a method that is based on locating the pitch and its
harmonics in the noisy speech spectrogram. To this end it uses
a filterbank with adjustable and time-varying center frequencies,
that correspond to the fundamental frequency and its harmonics.
One can view the filtering operation as a rake that is pulled in
time direction through the logarithmic power spectral density
(PSD) values log{|X(t, f)|2} of the signal’s short-time Fourier
transform (STFT) X(t, f), where t denotes the frame index
and f the frequency bin index to collect the energy at the pitch
frequency and its harmonics. The relevant frequency bin indices
at the t-th frame for a hypothetical carrier frequency difference
fD, pitch fP (t) and the corresponding pitch harmonics are
given by fD + τ · fP (t), where (τ ∈ [1, τmax]). To account
for the limited frequency resolution of the STFT analysis, not
only the frequency bin itself but also a small range around it
is considered by introducing the frequency deviation parameter
ν. So, the logarithmic PSD values of the pitch including the
harmonics are given by

Ψτ
ν(t, fP (t), fD) = log{|X(t, fD + τ · fP (t) + ν)|2}. (1)

These values are weighted by factors ω(τ, ν), which depend
on the harmonic index τ and the distance ν to the filter center,
and are summed by

Γ(t, fP (t), fD) =

τmax∑
τ=1

+W∑
ν=−W

ω(τ, ν) ·Ψτ
ν(t, fP (t), fD). (2)

For each frequency difference fD a different sequence of
pitch values fP = [fP (0), . . . fP (T − 1)] is optimal in the
sense that the summation of Γ(t, fP (t), fD) along t reaches a
maximum. Stated differently, the maximization of (2) will yield
an estimate of fD. This is achieved by the following three steps.
First, for each time instance t, the maximum across the possible
pitch hypotheses fP (t) ∈ [fP,min, fP,max] is computed:

f ′P (t, fD) = argmax
fP (t)

{Γ(t, fP (t), fD)} (3)

Γ′(t, fD) = Γ(t, f ′P (t, fD), fD). (4)

Γ′(t, fD) is the maximum log-energy value for a given
demodulation shift hypothesis fD, and the corresponding pitch
hypothesis is f ′P (t, fD). Here, fP,min and fP,max denote the
frequency bins corresponding to the assumed minimum (50 Hz)
and maximum (400 Hz) pitch frequencies.

Next, a summation over time results in the accumulated
log-energy per carrier frequency difference hypothesis fD:

Γ̂(fD) =

T−1∑
t=0

Γ′ (t, fD) . (5)

Assuming a single speaker scenario, the maximum of Γ̂(fD)
is selected as the most likely hypothesis for the demodulation
shift f̂D with

f̂D = argmax
fD∈ΩfD

{
Γ̂(fD)

}
(6)

with ΩfD denoting the set of candidate frequency differences,
and the corresponding sequence of pitch hypotheses

f̂P = [f ′P (0, f̂D), . . . , f ′P (T − 1, f̂D)]. (7)

As reported in several publications, e.g., in [9], and also
observed in our own experimental recordings, some audio
segments have only a very weak or even no pitch at all, although
the harmonics are clearly observable. To take account of this
observation the weight of the pitch ω(0, ν) is only half of
ω(1, ν), i.e., the weight of the first harmonic. Furthermore, all
other harmonics are weighted with ω(τ, ν) ∝ 1

τ , whereby all
filters are designed in a triangular shape.

The summation in (2) gives a similar pitch detection feature
as the Spectral Harmonics Distortion (SHC) used in the YAAPT
algorithm [9], whereby (2) is defined as a sum of logarithmic
PSD values and SHC is a sum over a product of magnitude
spectral values. The log-spectral domain formulation causes a
dynamic range reduction and improves the numerical stability.

Since (2) extends the pitch tracking problem towards an
open range search by introducing the unknown parameter fD,
the computational complexity of the problem is increased
by a factor proportional to the size |ΩfD | of the set of
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candidate values for the frequency difference. Hence, reducing
the computational complexity becomes an important task which
in our case is handled by interpreting (2) in the cepstral domain
as shown in the next section.

III. IMPLEMENTATION

The computationally expensive evaluation of the terms in
(2) can be interpreted as a correlation of the logarithmic PSD
values log{|X(t, f)|2} with a filter function

h(f, fP ) =

τmax∑
τ=1

W∑
ν=−W

ω(τ, ν) · γ(f − τ · fP (t)− ν), (8)

along the frequency axis, where γ(.) denotes the unit impulse.
This interpretation is similar to the harmonic sieves proposed in
[17]. The correlation, which has to be carried out for all fP (t) ∈
[fP,min, fP,max], can be efficiently computed by applying a
Fast Fourier Transformation (FFT), i.e., by moving to the power
cepstral domain, and using the Overlap-Save-Method.

Fig. 2 shows a block diagram of the overall algorithm.
This implementation is denoted as ”Rake-PC” (Rake Power
Cepstrum) in the following. The upper part of the figure

Filterbank
FFT

(.)*

Signal
PSD log(.)

IFFT

Product

ar
gm

ax
(.)

argmax(.)

FFT

Interpolate(Energy)

Carrier Frequency
f̂D

Pitch tracef̂P

Time

Pitc
h

Sh
if

t

Γ(t, fP (t), fD)

Time

Sh
if

t

Energy

Γ′(t, fD)Γ̂(fD)

f

h(f, fP )

Difference

f
′ P
(t
, f

D
)

Figure 2: Rake-PC: Block diagram showing power cepstral
domain correlation, carrier frequency difference and pitch trace
estimation.

illustrates the realization of the correlation of the log-PSD with
the set of filters, where each filter correponds to an assumed
value of fP , in the PSD domain. The resulting Γ(t, fP (t), fD)
depends on time frame t, the assumed pitch frequency fP (t),
and the carrier frequency shift fD. Next, the optimal value of
the pitch is determined according to Eq. (3), followed by a
summation along the time axis, Eq. (5). The resolution of the
resulting Γ̂(fD) is limited by the STFT size, as the shift is
given by its bin index. This can be overcome by interpolating
the accumulated log-energy terms, e.g., by spline interpolation.
The subsequent argmax operation from (6) yields the final
estimate f̂D, whose resolution is no longer limited by the FFT
size.

Note, that the first maximum operation as stated in (3),
is carried out independently for each time frame t, a clear
shortcoming of the method, as it does not account for the inertia
of the vocal cords, that results in smooth pitch trajectories.
Introducing a-priori knowledge to account for the lowpass
characteristics of the pitch trajectory, e.g., by using a simple
first order Markov chain as proposed in [12], would improve the
pitch tracking precision, however, at the cost of a significantly
increased computational complexity.

The values of fD are quantized by the FFT resolution and
the maximum search from (6) is restricted to the frequency bins
that belong to the frequency range 0 Hz to 3500 Hz for a signal
sampled at 8 kHz. The upper limit is motivated by the fact that
a speech signal requires approximately a 500 Hz bandwidth to
be intelligible and that the regarded harmonics have to fit in
the considered frequency range. Signals with negative offsets
fD are not considered because they are characterized by a
significant signal loss of the lower frequencies and remain
unintelligible without signal reconstruction approaches.

The availability of pitch trace estimates f ′P (t, fD), t =
0, . . . , T − 1, offers the opportunity to discard maxima in
Γ̂(fD) that are caused by narrow-band digital transmissions
instead of speech. As human speech is characterized by a
time-variant pitch, while digital transmissions operate with a
fixed frequency, the two can be discerned by the variance of
f ′P (t, fD). If it falls below a threshold, the detected signal is
probably not speech and consequently discarded.

IV. PITCH TRACKING EXPERIMENTS

To evaluate the proposed approach w.r.t. its capabilities of
tracking the human pitch we used the PTDB-TUG database
from [18] and compared our approach to the YAAPT algorithm
implementation [9]. The results are given in Fig. 3. The Rake-
PC pitch tracker achieves in more than 85% of all pitch
containing speech segments a higher precision than the YAAPT
algorithm. However, in the remaining 15% of the segments the
performance stays way below YAAPT. This difference can be
attributed to the sophisticated post-processing of YAAPT (multi
pitch candidate selection process, non-linearities to restore
missing pitches, application of temporal restrictions) which is
missing in Rake-PC. If a Kalman filter is applied to the pitch
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Figure 3: Cumulative density function (CDF) of pitch estima-
tion error per frame on PTDB-TUG database [18].
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Figure 4: Difference between estimated and ground truth carrier
frequency difference for three FFT sizes. Length of speech
activity was ≥10 s. No crosstalkers present.

trajectory estimated by Rake-PC, the performances difference
can be compensated for to a great degree.

Fig. 3 also shows the results of an oracle experiment, where
it was allowed to multiply the pitch tracking results by a factor
of 2 or 0.5 to compensate for mistakenly selecting a harmonic
or subharmonic as the pitch frequency. Both algorithms benefit
from the oracle, with Rake-PC achieving higher gains and
even outperforming YAAPT. From this control experiment
it can be concluded that the majority of the large errors
in pitch estimation are caused by a wrong classification of
pitch harmonics and sub-harmonics to be the pitch. This is
a typical error to be handled by post-processing. But this
misinterpretation has no impact on the task of carrier frequency
difference estimation, because we are only interested in the
sum of the PSD values at pitch and pitch harmonics.

V. EXPERIMENTS ON HAM RADIO DATA

We have set up a transmission system between our amateur
radio station in Paderborn and several other distant ham
radio stations across Europe, transmitting utterances from the
LibriSpeech corpus [19]. Kiwi-software defined radio (SDR)
devices [20] at the distant stations were utilized to demodulate
the received SSB HF signals and send the recorded audio
signals back to our servers via a websocket connection. Audio
markers had been added to the signal to allow for an automated
time alignment between the transmitted and received signals,
easing the annotation and segmentation of the data [16].

For the transmissions a beacon, callsign DB0UPB, was
used, which was supervised by a human to avoid interference
with other ham radio stations. The HF signals are SSB
modulated using the Lower Side Band (LSB) with a bandwidth
of 2.7 kHz at carrier frequencies of 7.06 MHz − 7.063 MHz
and 3.6 MHz − 3.62 MHz. To simulate a carrier frequency
difference the demodulation frequency of the transmitter and
the receiver were selected to differ by values from the set
fD = [0, 100, 300, 500, 1000]. Although the original speech
samples have a sampling rate of 16 kHz, and the Kiwi-
SDR samples the data at 12.001 Hz, the finally emitted data
is band-limited to 2.7 kHz (International Telecommunication
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Figure 5: Dependency of error class affiliation on speech
segment length. Implementation of Harmonic/Spectral Envelop
following [4]. FFT size set to 4096.

Union (ITU) regulations) which introduces a loss of the upper
frequencies in case of LSB transmission depending on the
carrier frequency difference fD. The data set has a total size
of 23:31 hours of which 3:28 hours contain speech activity.

A. Carrier Frequency Difference Estimation

In Fig. 4 the error between the estimated difference f̂D and
the ground truth difference is depicted. For this experiment the
length of the speech segments was between 10 s and 27 s. The
system reliably works with errors below ±5 Hz, which is an
error that is not perceivable by humans [3].

For shorter speech segments the error increases as can be
seen in Fig. 5, where we grouped the estimation errors in
five classes. In that figure we compared our approach to
the harmonic/spectral envelope approach of [4], which we
implemented on our own since no open source implementation
was available. It can be observed that the proposed approach
achieves lower estimation errors, both on short and longer
speech utterances.

B. Parallel speakers and harmonic errors

A small amount of our recordings include the special case of
a concurrent speaker at a higher frequency. This is a challenging,

0 500 1,000 1,500 2,000 2,500 3,000

−3

−2

−1

0
·104

Speaker
Crosstalker

(Sub-)Harmonic

Carrier frequency difference [Hz]

A
cc

um
ul

at
ed

L
og

-E
ne

rg
y

Figure 6: Accumulated logarithmic energy in case of two
parallel speakers. Crosstalker is visible as secondary maximum
and its (sub-)harmonics.
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however likely scenario to be encountered in practice. Fig. 6
depicts the accumulated logarithmic energy Γ̂(fD), Eq. (5),
versus candidate frequency difference fD. Both, the speaker at
100 Hz and the interfering crosstalker at 1098 Hz are visible
as maxima in the accumulated log-energy. Also two secondary
maxima are visible next to the crosstalker which we attribute
to harmonics/subharmonics and a possible non-linearity in
the transmission system. So extending the Rake-PC towards
concurrent speaker tracking and identification seems to be
possible, similar to multi-speaker tracking in diarization [21]
or localization tasks [17].

C. Processing time
In Fig. 7 the real time factors of the proposed approach,

our implementation of [4] and the reference implementation of
the YAAPT algorithm from [9] are given. The implementation
following Fig. 2 (”Rake-PC (Single Core)”) improves the real
time factor significantly compared to the direct implementation
(”Rake (Single Core)”). The overall processing time can be
further reduced by a straightforward parallel implementation
(”Rake-PC (Multi Core)”). For a FFT size of 2048 Rake-PC
has a similar real time factor as [4] and [9].
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Figure 7: Real time factors for different approaches and FFT
sizes, including single and multi core implementation for a
block shift of 20 ms. (AMD Ryzen 5 3600, 6-Core, 32GB
RAM, Matlab)

VI. CONCLUSIONS

In this paper we have presented an approach that estimates
frequency differences between the mixing oscillator in the
HF transmitter, that moves the baseband signal to the carrier
frequency, and the oscillator in the receiver that converts the
radio signal back to baseband. It is based on tracking the pitch
and its harmonics in the received baseband speech signal in
an open range search method. Experiments on real data from
HF transmissions show promising performance, both in terms
of precision and computational complexity.
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