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Abstract—The scattering transform is a non-linear signal
representation method based on cascaded wavelet transform
magnitudes. In this paper we introduce phase scattering, a
novel approach where we use phase derivatives in a scattering
procedure. We first revisit phase-related concepts for representing
time-frequency information of audio signals, in particular, the
partial derivatives of the phase in the time-frequency domain.
By putting analytical and numerical results in a new light, we
set the basis to extend the phase-based representations to higher
orders by means of a scattering transform, which leads to well
localized signal representations of large-scale structures. All the
ideas are introduced in a general way and then applied using the
STFT.

I. Introduction
For most applications using time-frequency representations,

only the magnitude of the obtained complex coefficients
is considered as, e.g., in the cases of spectrogram and
scalogram [1]. This is a standard method for analyzing
the time-frequency content of an audio signal, which is
also heavily used in deep learning for audio, where neural
networks and time-frequency (magnitude) representations
often go hand-in-hand [2]–[4]. In this context, the scattering
transform provides an important link, as it may be interpreted
as a deterministic neural network, computing a cascade of
filter magnitude transformations, i.e. a sequence of filtering
and application of the modulus as non-linearity. As signal
representation, it is able to reveal large-scale structures of
the signal [5], which is partly caused by the non-linearity,
i.e. discarding the phase information. The phase is visually
very unintuitive but its derivative in the time, as well as in
the frequency direction yield very informative and intuitive
phase-based signal representations. The resulting quantities
overcome some of the issues of the (pure) phase and are
directly linked to the concepts of instantaneous frequency
and group delay. The interest of this work is to investigate
the idea of scattering with a complementary approach as
before, namely considering the partial derivatives of the
phase instead of the modulus as non-linear step. As in the
magnitude case, larger-scale structures can be revealed with
this phase scattering procedure, additionally inheriting the
precision of the localization of time-frequency information
that is provided by these phase-based signal representations.

This work was supported by the Austrian Science Fund (FWF) START-
project FLAME (Frames and Linear Operators for Acoustical Modeling and
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In Section II we revisit basic results around the concepts
of instantaneous frequency and group delay, in particular a
result related to the short-time Fourier transform (STFT). This
revision shows the nature of the introduced concepts from a
different perspective, which is the key for the main part of the
paper. Analytical and numerical results are provided in order
to strengthen the intuition. In Section III we start by briefly
presenting the scattering transform in a time-frequency setting
and adapt its principle structure to define the phase scattering
coefficients. Finally we show promising experiments on proof-
of-concept examples in a direct comparison to (magnitude)
scattering based on the STFT. This first study sets the basis
and intuition for further research on this idea.

The content of this paper was mainly developed in the Mas-
ter’s thesis of the first author [6]. More details, including proofs
and Matlab scripts are available under https://github.com/
danedane-haider/Phase-Scattering-Masterthesis. The scripts
use the LTFAT toolbox [7], [8].

II. Instantaneous Frequency and Group Delay
Instantaneous frequency (IF) and group delay (GD) are

important concepts in signal analysis [1] as they provide
precise information about frequency, resp. temporal positioning
of signal components [9]. Local versions are defined by the
partial derivatives of the phase in the time-frequency plane. Let
ΦxΨ(t, ω) denote the phase function of a complex-valued time-
frequency representation, based on a family of localization
functions Ψ, then

ω̂Ψ(x; t, ω) =
1

2π

∂

∂t
ΦxΨ(t, ω) (1)

is called channelized instantaneous frequency (CIF) and

τ̂Ψ(x; t, ω) = − ∂

∂ω
ΦxΨ(t, ω) (2)

local group-delay (LGD) of x w.r.t. Ψ. These concepts have
been used already many times, e.g. for the phase vocoder [10]
or reassignment methods [11], [12] and other types of phase-
based processing [13]. In this work we focus on the STFT
as underlying time-frequency representation. According to the
scaling conventions we use, its phase function Φxg (t, ω) using
a window g is found in its magnitude-phase representation in
the following way,

Vgx(t, ω) = |Vgx(t, ω)| · e2πiΦx
g (t,ω). (3)

6ISBN: 978-9-0827-9706-0 EUSIPCO 2021



Usually, when working with the STFT, a specific phase con-
vention is assumed. The resulting phase can then be converted
into a time-invariant and a frequency-invariant version. In
contrast to previous work, we select specific invariances in the
STFT beforehand for computing CIF and LGD respectively.
For x, g ∈ L2(R) the frequency-invariant STFT is defined by

Vgx(t, ω) =

∫
R
x(τ)g(τ − t)e−2πiωτdτ, (4)

t, ω ∈ R. Here, the exponential term is independent of the
time index t. The time-invariant STFT is defined by changing
the order of modulation and translation, giving

Vtgx(t, ω) =

∫
R
x(τ)g(τ − t)e−2πiω(τ−t)dτ. (5)

Our approach is to consider CIF in a frequency-invariant (4)
and LGD in a time-invariant setting (5). This results directly
in modes of these quantities that are necessary for the last
chapter of the paper. Note that this setting only agrees with the
original definitions (1) and (2) up to the induced invariances.
Therefore, we will use the notation CIFf and LGDt further
on. The following proposition shows how CIFf and LGDt can
be computed based on a result by Auger and Flandrin [11].
We additionally emphasize the formal requirements [14] and
consider the introduced STFT-invariances (4) and (5).

Proposition 1. Let x ∈ L2(R) and g ∈ L2(R) ∩ C1(R),
such that Tg ∈ L2(R), where the time-weighted window Tg
is given by Tg(τ) = τg(τ) for all τ ∈ R. Then Vgx(t, ω)
and Vtgx(t, ω) are infinitely partially differentiable in both
variables, t and ω. Let further g′ denote the differentiated
window g′(τ) = d

dτ g(τ). Then, for Vgx(t, ω) 6= 0, CIFf and
LGDt can be computed by

ω̂STFT(x; t, ω) = − 1

2π
Im

{
Vg′x(t, ω)

Vgx(t, ω)

}
(6)

τ̂STFT(x; t, ω) = Re

{
VtTgx(t, ω)

Vtgx(t, ω)

}
, t, ω ∈ R. (7)

A compact proof of this can be found in [6]. The impact of
the STFT invariances gets clear in the following.

A. Analytical Shapes of CIF and LGD - Revisited
Based on Proposition 1, one finds the CIFf of stationary

sinusoids and the LGDt of Dirac impulse to be affine linear
functions. The results may be considered as known, however,
they show an alternative point of view via the induced STFT-
invariances which is crucial for the construction of the phase
scattering coefficients in the last section.

1) CIFf Analytically: The CIFf representation of a station-
ary sinusoid (based on a frequency-invariant STFT) has linear
behaviour along the frequency axis, centered at the IF of the
sinusoid.

Lemma 1. Let x(τ) = e2πiξ0τ be a complex sinusoid with
frequency ξ0 and g a window function with g, Tg ∈ L2(R) ∩
L1(R) such that the Fourier transform of g has no zeros and

the Fourier transform of Tg only a single one at 0. Then
Equation (6) reduces to

ω̂STFT(x; t, ω) = ξ0 − ω (8)

t, ω ∈ R.

Note that using a time-invariant STFT results in
ω̂STFT(x; t, ω) = ξ0, yielding the IF directly, whereas here a
frequency shift function is computed, measuring the distance
to ξ0 linearly.
2) LGDt Analytically: The LGDt representation of a Dirac

impulse (based on a time-invariant STFT) has linear behaviour
along the time axis, centered at the impulse.

Lemma 2. Let x(τ) = δ(· − τ0) where δ denotes a Dirac
impulse and g ∈ L2(R)∩C1 with g′ ∈ L2(R) where g has no
zeros and g′ only a single one at 0. Then Equation (7) reduces
to

τ̂STFT(x; t, ω) = τ0 − t (9)

t, ω ∈ R.

Also here, using the time-invariant version of the STFT is
key to obtain this affine linear function and is not obtained
when using the frequency-invariant STFT. The results of the
Lemmata can be deduced directly from Proposition 1, see [6].
Thus, by choosing the specific STFT versions in this

discriminative way, CIFf and LGDt are linear functions in
frequency resp. time direction. We briefly illustrate this also
numerically to strengthen the intuition.

B. Numerical Shapes of CIF and LGD - Revisited
Proposition 1 provides a convenient method to compute

phase derivatives numerically by point-wise operations of
two STFTs. However, when working with finitely supported
windows in applications, the computations (6) and (7) clearly
have to be restricted to the support of the window, i.e. CIFf
and LGDt coefficients are considered to be zero outside the
supports. Therefore, in an actual numerical representation the
linear shapes from (8) and (9) are localized naturally to the
range of the window support as well. Using the toy examples
from Lemma 1 and 2 with ξ0 = 1000Hz and t0 = 0.5s,
one finds the piece-wise linearly decreasing functions locally
around ξ0, resp. t0. Figure 1 (a),(b) illustrates well how CIFf
and LGDt resemble one another in terms of their shape in time,
resp. frequency direction, emphasizing the duality of the two
quantities. Panels (c),(d) show the direct comparisons to STFT
magnitudes. Besides the intuition this brings for phase-based
signal representations in general, the chosen STFT conventions
allow to use CIFf and LGDt in a scattering procedure in a
meaningful way.

For the calculation of the plots we used the function
gabphasederiv from the Large Time-Frequency Toolbox
(LTFAT) [7] with the additional flags ’freqinv’ and
’timeinv’, which follow the STFT conventions used in
Proposition 1, based on the discrete Gabor transform dgt.
Discrete versions of a dilated Gaussian are used as window
functions.
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Figure 1: (a) Full CIFf of sinusoid and one column for fixed t
(right). (b) full LGDt of impulse and one column for fixed ω
(bottom). (c) full STFT magnitude of sinusoid and one column
for fixed t (right). (d) full STFT magnitude of impulse and one
column for fixed ω (bottom).

III. Phase Scattering
Indeed, the partial derivatives of the time-frequency do-

main phase are useful quantities for describing time-frequency
information since they provide precise time and frequency
localization of harmonic resp. transient events of a signal.
Using the analytical results and the intuition from the previous
section, we aim for expanding the representations to higher
orders in the manner of the scattering transform.

A. Time-Frequency Scattering

The computational scheme of the scattering transform is
a cascade of absolute values of filter transformations [15],
[16]. A network-like structure emerges that results in lay-
ers of magnitude filter decompositions. In a time-frequency
setting this can be seen as taking one set of localization
functions (band-pass filters) per layer, applied via convolution
(originally using wavelet filters). Several papers show this
transform as promising tool to represent large-scale features
of audio signals, such as amplitude or frequency modulation,
chord structures (intervals), tempo and rhythm, etc. [17]–[19].
Therefore, it is often used as external feature extraction step
for deep learning tasks and moreover, is celebrated as being
an interpretable neural network itself with fixed filters and a
solid mathematical foundation, allowing for rigorous analysis.

Definition 1 (Time-Frequency Scattering). Let x ∈ L2(R) and
Ψk = {ψki }i∈Λk

denote the set of filters for the k-th layer. Λk
is the corresponding (frequency-)index set and the operator
Uk[p0] = |ψp0 ∗ · | computes the magnitude filtering at index
p0. Then, the scattering transform is a cascade of the operators
U1, . . . ,Uk along a frequency-index path p = (p1, . . . , pk) ∈
Λ1 × · · · × Λk and we call

S[p]x = Uk[pk] . . .U2[p2]U1[p1]x (10)

the k-th order (magnitude) scattering coefficients w.r.t. p.

The original idea of the scattering transform was to create
a translation-invariant representation on L2(R) by integrating
over the emerging scattering coefficients [15]. In applications,

a final low-pass filtering step is used to simulate this property
locally. In this work we preliminarily do not consider this step
and focus merely on the nature of the coefficients.

B. CIF and LGD Scattering

Instead of taking the modulus of the complex time-
frequency coefficients, we use the mappings to the partial
derivatives of the phase as non-linearity in the scattering
cascade. This procedure can be written in terms of operators,
defined in the following way.

Definition 2 (Phase Scattering Coefficients). Let x ∈ L2(R)
and Ψ a family of localization functions with index set Λ, then
the operators (

Ω̂Ψ[p0]x
)
(t) := ω̂Ψ(x; t, p0) (11)(

T̂Ψ[p0]x
)
(t) := τ̂Ψ(x; t, p0) (12)

compute CIF and LGD of x at the frequency index p0 ∈ Λ as
function of time. Let p = (p1, . . . , pk) ∈ Λ1×· · ·×Λk denote
a frequency-index path associated to k families of localization
functions Ψ1, . . . ,Ψk, then cascading the operators (11) and
(12) along p defines the k-th order CIF scattering coefficients

Ω̂[p]x = Ω̂Ψk
[pk] . . . Ω̂Ψ1

[p1]x (13)

and the k-th order LGD scattering coefficients

T̂ [p]x = T̂Ψk
[pk] . . . T̂Ψ1

[p1]x. (14)

of x w.r.t. p. We shall call Ω̂[(q1, ..., qk−1, λ)]x, considered for
all λ ∈ Λk, the k-th CIF scattering layer of x w.r.t. the path
q = (q1, ..., qk−1). Analog for the LGD case.

Building on the results from the previous chapter, we use a
phase scattering procedure that use CIFf and LGDf computed
by the STFT to provide numerical examples.

Definition 3 (STFT-Phase Scattering Coefficients). Under the
conditions from Proposition 1 we can define the STFT-phase
(or CIFf resp. LGDf) scattering coefficients analogously to (13)
and (14) by cascading the operators

(
Ω̂STFT[p0]x

)
(t) = − 1

2π
Im

{
Vg′x(t, p0)

Vgx(t, p0)

}
, (15)

(
T̂STFT[p0]x

)
(t) = Re

{
VtTgx(t, p0)

Vtgx(t, p0)

}
, t ∈ R (16)

along a frequency-index path p = (p1, ..., pk) ∈ Rk, associ-
ated to k STFTs using windows g1, . . . , gk.

Inspired by the experiments from [17]–[19], we show that
2nd order phase scattering coefficients are capable of capturing
wider scale information, comparable to magnitude scattering.
1) CIFf Scattering Application - Frequency Modulation:

We first show that CIFf scattering of a frequency modulated
sinusoid finds the modulation frequency in the 2nd layer.
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Figure 2: (a),(b) 1st and 2nd order CIFf and STFT scattering layers of x1 with propagation channel at 880Hz. (c),(d) 1st and
2nd order CIFf and STFT scattering layers of x2.

Lemma 3. Let x(τ) = e2πi(ξ0τ+γ(τ)) with γ(τ) = sin(2πξ1τ)
denote a vibrato signal with center frequency ξ0 and modula-
tion frequency ξ1. Then the 2nd order CIFf scattering layer of
x w.r.t. p1 = ξ0 is given by

(Ω̂STFT[ξ0, ω]x)(t) = ξ1 − ω (17)

t, ω ∈ R.

This result shows the natural extension of the (1st or-
der) CIFf representation from Lemma 1. Let φ(τ) denote
the temporal phase of x, given as above. We see that the
instantaneous frequency of x is ω(x; τ) = 1

2π
d
dτ φ(τ) =

ξ0 + 2πξ1 cos(2πξ1τ), which when considered as a time-
domain signal itself possesses the IF ω(ω(x; τ); τ) = ξ1, the
modulation frequency of the vibrato. Using 2nd order CIFf
scattering, we find ξ1 as zero of an affine linear function,
coming from

(
Ω̂STFT[ω]x

)
(t) = ω(x; t) − ω. A more detailed

discussion can be found in [6].
Note that this result theoretically does not depend on the

chosen propagation index p1, however, in the numerical case
we have to care about staying inside the support of the window,
i.e. p1 ∈ supp(ĝ).
As numerical examples we set up two sinusoidal signals

x1, x2 at 880Hz and modulate x1 by γ1(τ) = sin(2π20τ),
creating a constant vibrato of 20Hz and x2 by γ2(τ) =
sin(2πτ(20 + eτ )), creating a vibrato that increases exponen-
tially in frequency, beginning at 20Hz. Figure 2 shows 1st
and 2nd order CIFf and STFT scattering layers of x1 and
x2, using the propagation frequency index corresponding to
880Hz. Although the modulation frequencies induced by γ1

and γ2 are extremely low, they are captured precisely in the
2nd CIFf layers respectively as zeros of linear functions. This
can be observed also for more general frequency modulation
functions. Magnitude scattering finds the modulation frequen-
cies as well, but here in terms of shifted window functions.

C. Mixed Phase Scattering
To provide an intuitive application of LGD scattering, we

refer to an earlier work [19] where we have shown how STFT
magnitude scattering can capture the frequency of temporal

patterns among transients in a signal. In this sense, our
approach is to use the LGDt representation as transient detector
and use a subsequent CIFf transformation to get the frequency
information of the LGDt-peak arrangement.

Definition 4 (Mixed Phase Scattering). Let x ∈ L2(R) and
Ψ1,Ψ2 families of localization functions, then we define

M̂ [p1, p2]x = Ω̂Ψ2
[p2]T̂Ψ1

[p1]x (18)

as 2nd order mixed phase scattering coefficients of x w.r.t. the
path (p1, p2).

1) Mixed Phase Scattering Application - Dirac Comb: We
show that 2nd order mixed scattering finds the fundamental
frequency of a Dirac comb signal.

Lemma 4. Let x(τ) =
∑
`∈Z δ(·−

2π`
ξ0

) be a Dirac comb with
fundamental frequency ξ0. Then the 2nd order mixed phase
scattering layer of x is given by(

M̂ [p1, ω]x
)
(t) = ξ0 − ω (19)

for any p1 and t, ω ∈ R.

Crucial for this result is to use a window g with supp(g) ≥
2π/ξ0 to avoid regions of zero amplitude between the im-
pulses. Then

(
T̂STFT[ω]x

)
(t) is a saw-tooth wave for every

ω ∈ R with a fundamental frequency of ξ0 and the same
phase function as its sinusoidal equivalent, i.e. the IF is found
by the subsequent CIFf transformation analog to Lemma 3. A
more detailed discussion can be found in [6]. Figure 3 shows
the mixed phase scattering and STFT scattering layers of a
Dirac comb signal with fundamental frequency of 20Hz.

IV. Conclusion and Outlook
We revisited channelized instantaneous frequency and local

group delay by pointing out their linear characters when
considering two different STFT-invariance settings. Analytical
and numerical arguments are provided in order to emphasize
this perspective. Based on that we introduced an extension of
these representations in the manner of the scattering transform
by cascading the computations, called phase scattering. It
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Figure 3: (a) 1st and 2nd order mixed phase scattering layers
of the Dirac comb w.r.t. an arbitrary p1. (b) 1st and 2nd order
STFT scattering layers.

turned out that this procedure is, like the original scattering,
capable of extracting information that lives in larger scales.
We found modulation frequencies of vibrato signals and the
tempo of a Dirac comb emerging in the second layer of the
transform. However, other than the blurred representation of
time-frequency information that magnitude scattering provides,
CIFf and LGDt scattering allows for precise allocation of large-
scale time-frequency information by means of zeros of linear
functions.

This first study provides the foundation and intuition for fur-
ther investigations on scattering phase information. The many
existing results related to the scattering transform may serve as
source of inspiration. In particular, to provide a mathematically
well-defined setting one could formulate phase scattering in
terms of distribution theory. Then, the expected properties
regarding translation-invariance could be approached in theory.
An immediate next step for continuing numerical experiments
should be the development of computational algorithms that
produce clean plots and further on, how phase scattering
performs on real world audio signals. Finally, given the precise
allocation properties, it seems promising to evaluate a set of
phase-based scattering features as pre-processing step for a
classification task.
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