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Abstract—In this paper, a novel pitch detection algorithm
(PDA) is presented. Though pitch detection is a classical problem
that has been investigated since the very beginning of speech
processing, the proposed algorithm is based on a novel approach
relying on a proposed empirical relationship between fundamen-
tal frequency (f0) and instantaneous frequency (fi). Basically, f0
is defined for periodic signals only, whereas fi can be calculated
for any type of signals using the Hilbert transform. Notwithstand-
ing this substantial difference, the relationship described in this
paper shows some interaction between them, at least empirically.
Once this relationship was validated on a large set of speech
signals, it has been exploited to implement an algorithm in order
to (a) detect voiced parts of speech and (b) extract f0 contour
from fi pattern in the voiced regions. The obtained results of
the proposed method were compared to those of some well-rated
state-of-the-art PDA’s of different backgrounds, to show that the
quality of pitch detection yielded by the proposed approach is
quite satisfactory, both in clean and simulated noisy speech.

Index Terms—Pitch detection algorithm (PDA), f0 contour,
instantaneous frequency, voicing decision.

I. INTRODUCTION

Pitch is amongst the most prominent parameters in speech.
From a phonological point of view, pitch is responsible of
intonation and accentuation, whereas from the acoustic side,
pitch is quantified by voicing decision and f0 contour. Pitch
detection is probably the speech processing problem which had
the biggest interest. Several techniques have been implemented
during the last half century, to provide an accurate measure
of such a highly variable speech signal feature. Actually,
pitch depends on a variety of parameters, mainly the gender,
male or female, the age, young or old, and the type of the
language, tonal or non-tonal. A classification of the main pitch
detection techniques can be made according to the domain
of analysis, whether temporal, spectral or time-frequency [1].
In [2], another classification is proposed, dividing the pitch
detection methods into event-detection techniques, like peak-
picking and zero-crossing, and short-time average f0 detection
techniques, such as cepstral analysis [3], autocorrelation [4],
minimal distance methods [2], and harmonic analysis. As a
common point, the aforementioned techniques are applied on
short time frames, to reduce the effects of non-stationarity of
the speech signal. However, such a short time processing may
lead to errors while estimating the pitch periods [5].

To tackle these issues, another concept has emerged in the
last two decades, based on techniques applied along the entire

signal. The majority of these techniques are based on the
analysis of instantaneous frequency (fi), which is a theoretic
concept. In fact, fi is, by definition, the time-derivative of the
phase of the analytic signal. The latter is a complex signal
obtained by Hilbert transform [6]. For discrete signals, fi is
calculated by (1), where z(n) is the associated discrete analytic
signal and fs is the sampling frequency (for n ≥ 1)

fi(n) =
fs

4π
(arg(z(n+ 1))− arg(z(n− 1))). (1)

Three main pitch detection techniques based on fi analysis
were proposed by [7], [8] and [5], with valuable performance.
In spite of the good accuracy of these methods to extract f0
contour from fi values, an explicit or a direct relationship is
still missing. Such a relationship could fill the gap between
accurate empirical methods and the lack of a theoretical link
between both quantities, i.e. f0 and fi. Therefore, a novel
relationship, although still empirical, is proposed in this work,
in order to determine the voiced vs. unvoiced parts of the
speech signal, and then to extract f0 contour from fi values
in the voiced parts. Hence, this novel approach is proposed in
the aim to improve pitch detection especially in noisy environ-
ment, where classical PDA’s may be less efficient. Potential
applications could vary from intonation change detection to
expressive speech recognition in noisy environment.

This work is described as follows: Section II reviews the
main fi-based pitch detection techniques, Section III proposes
an empirical relationship between fi and f0 in speech signals,
and details an algorithm to implement the extraction of f0 from
fi through this relationship. Section IV shows the main results
of the application of this algorithm, in addition to other state-
of-the-art PDA’s, on a dataset of clean and simulated noisy
speech. Finally, the performance measures are commented and
discussed.

II. RELATED WORK

Using instantaneous frequency (fi) for pitch detection is an
alternative way to get around some problems of conventional
methods. In fact, fi pattern can be continuously analyzed
along the signal, which allows avoiding some constraints,
such as (i) short-time analysis, usually required to reduce the
effect of non-stationarity of the speech signal, (ii) wavelet
scale adjustment, necessary to enhance the time-frequency
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resolution, and (iii) spectral leakage, which is inevitable in
multi-resolution analysis [5].

Most of fi-based methods extract f0 contour as a continuous
function of time (f0 is considered null in unvoiced segments).
In [7], Qiu et al. proceed as follows: First, the harmonics are
attenuated using a bandpass filter-bank, then the discrete in-
stantaneous frequency (DIF) is estimated at different scales of
the bandpass filter-bank, and finally voicing decision is taken
upon certain criteria related to the DIF value (DIF ≤ 50Hz
or DIF ≥ 500Hz) or to the variation between neighboring
DIF’s (∆(DIF) ≥ 1.4Hz) or to the duration of sustained DIF
(whether it is less than 20ms).

In [8], Abe et al. used fi pattern to extract f0 by tracking
the harmonics. To achieve this goal, the signal is decomposed
into harmonic components by applying a filter-bank with a
variable center frequency. The instantaneous frequency, fi, of
each component is considered as the harmonic pattern. Finally,
the lowest fi pattern, i.e. the lowest harmonic, is retained as
the f0 contour [8].

In [5], the well-known Hilbert-Huang transform (HHT) is
applied for pitch detection from fi pattern. Originally, HHT is
a twofold process that is performed first by applying empirical
mode decomposition (EMD), and then by decomposing the
signal into intrinsic mode functions (IMF) through a special
process called ‘sifting’. Each resulting IMF is characterized
by its instantaneous frequency, fi, and its instantaneous am-
plitude, Ai. After extracting all IMF’s, f0 and voicing decision
are estimated, first by filtering all IMF’s, where only fi values
between 50Hz and 600Hz are kept, and where fi values are
set to zero if ∆fi ≥ 100Hz in a 5ms-frame or when the
instantaneous amplitude Ai(t) ≤ max(Ai)

10 . At each instant, the
fi value corresponding to the highest Ai value in all IMF’s,
is retained as f0 value. Finally, the extracted f0 contour is
merged and smoothed by post-filtering.

The aforementioned fi-based pitch extraction techniques
were successfully compared to the rest of state-of-the-art
methods, yielding a very accurate voicing decision and f0
values, which proves that using fi is a good alternative to
extract f0 without taking care of the non-stationarity of the
speech signal. However, none of these methods has been
established upon a direct relationship, neither theoretically nor
empirically, between fi and f0.

III. METHOD

In this work, firstly an empirical relationship between fi
and f0 patterns in speech signals is proposed. Secondly, an
algorithm is implemented based on this relationship in order
to determine the voiced/unvoiced parts, and then to extract f0
contour from fi values in the voiced regions.

A. Proposed empirical relationship between pitch and instan-
taneous frequency

In spite of the absence of a direct relation between fi and
f0, both quantities share a common point, which is continuity
over time, at least in the regions where f0 contour is defined,
such as the voiced parts of a speech signal.

1) Definitions: Starting from the assumption that fi ob-
served at each instant n carries f0 and its multiples, some
novel notations are proposed in the following.

a) Instantaneous pitch: It is defined as the value of f0
at every discrete instant n inside the voiced regions only, i.e.
where f0 exists. This is different from conventional PDA’s
where pitch is usually computed on short overlapping frames,
by one value at each frame, and then f0 contour is obtained
by interpolation.

b) Instantaneous pitch multiples: They are defined at
each instant n as the positive integer multiples of instantaneous
pitch f0(n) below |fi(n)|. The highest instantaneous multiple
is defined as the closest one to |fi(n)|. Consequently, the
highest instantaneous pitch multiple order, denoted Hmax(n),
is defined as:

Hmax(n) =

⌊
|fi(n)|
f0(n)

⌋
. (2)

It should be emphasized that in this particular case, we avoided
calling such f0 multiples as harmonics for two major reasons:
(a) The notion of harmonics is related to Fourier transform,
whereas fi is obtained from the analytic signal, yielding from
Hilbert transform (cf. (1)), (b) To the best of our knowledge,
no explicit relationship has been proved between f0 and fi,
though some interaction may exist in harmonic signals [6],
[9].

c) Instantaneous residual frequency: It is defined as
the difference between |fi(n)| and the instantaneous pitch
multiple:

fir(n) = |fi(n)| −H(n)f0(k) ∀ H(n) ≤ Hmax(n), (3)

where 1 ≤ H(n) ≤ Hmax(n) are the orders of the instanta-
neous pitch multiples at time n.

2) Estimation of instantaneous pitch from residual fre-
quency: It is obvious that for the highest instantaneous pitch
multiple order Hmax(n), the residual instantaneous frequency
(fir) is minimal and we have: fir(n) ≤ f0(n). In this
particular case, we notice empirically that f0 contour can be
obtained as the upper bound of the envelope of fir. This upper
bound is calculated on overlapping frames of short duration
(less than 40ms):

f0,est(nk) = max
nk−L

2 ≤l<nk+
L
2

fir(l), (4)

where nk and L are the center and the length of the kth frame,
respectively.

To validate the result given by (4), the ground-truth f0
values provided by PTDB-TUG database [10] were utilized.
Therefore, the ground-truth f0 contour was first aligned to the
instantaneous frequency fi, then the residual frequency fir,and
the estimated fundamental frequency f0est were calculated us-
ing (2)-(4) for different preset values of Hmax. To evaluate the
degree of superposition of ground-truth f0 and the estimated
pitch f0est , the root mean square error (RMSE) was measured
between their respective contours for a large subset of signals
from PTDB-TUG database [10]. The choice of this corpus is
motivated by its original purpose, i.e. pitch tracking quality
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assessment. The test set corresponds to a random selection of
20 phrases, each uttered by 10 male and 10 female speakers,
thus yielding 400 signals. The results mentioned in Table I
show that increasing the maximum order of instantaneous
pitch multiples (Hmax) in (2) and (3) makes the difference
between the contours of ground-truth f0 and the estimated
pitch f0,est, calculated by (4), small enough to consider them
as superposing. However, the fact of utilizing ground-truth
f0 to calculate f0est (cf. (2)-(4)), implies the existence of a
recursive relationship between both of them, so the problem is
how to extract f0est directly from the instantaneous frequency
fi, such that it approximates the ground-truth f0.

TABLE I: Root mean square error (RMSE) between ground-
truth f0 and f0 contour estimated using (2)-(4) for different
preset values of the maximum order of instantaneous pitch
mutiples (Hmax)

Hmax Mean RMSE Std RMSE
(Hz) (Hz)

5 5907.9 1255.5
10 5638.6 1221.4
20 5123.3 1157.7
50 3716.4 1008.7

100 1867.3 872.9
200 356.5 389.8
500 0.6 0.6

1000 0.6 0.6

B. Proposed pitch detection algorithm 1

To extract voicing decision (V/UV) and f0 contour from
fi values using (1)-(4), the following three-stage method is
implemented as an algorithm.

a) Stage 1-Preprocessing:
• Initialization

1) Extract fi from a digital speech signal using (1).
2) Set the range of minimum and maximum f0 values

[f0min , f0max ], e.g. [80 Hz, 270 Hz] for a male voice and
[12Hz, 400Hz] for female one.

3) Set the step of f0 candidates (f0cand ) within the range
[f0min , f0max ], e.g. step = 0.1 Hz.

• V/UV decision
4) At each time index n ≥ 1, calculate the differential

instantaneous frequency defined as

∆fi(n) =
fi(n+ 1)− fi(n− 1)

2
.

5) If ∆fi(n) ≥ Th1 then the point n is considered
as unvoiced. The choice of threshold Th1 may differ
between clean and noisy speech, male and female
voices. However, a dynamic setting of Th1 as the
mean value (along the entire signal) of the differential
instantaneous frequency ∆fi should give good results.

6) If the ratio of points marked as voiced within a frame is
higher than the threshold Th2 (generally set between
85% and 95%), then the whole frame is marked as
voiced.

1 Matlab code: https://github.com/zied-mnasri/f0 IF model

b) Stage 2-f0 extraction:
7) Fix a set of M > 1 values of equally-spaced f0

candidates ranging between f0min and f0max ,

fm = (f0max − f0min)
(m− 1)

(M − 1)
+ f0min ,∀m = 1, ..,M.

8) Set the maximum order of instantaneous pitch multi-
ples Hmax to be calculated at each instant n.

9) For each instant n, calculate the vector
of the instantaneous pitch multiples orders
1 ≤ (Hm)m=1,..,M ≤ Hmax for each f0
candidate value (f0cand

(n,m)) such that

Hmax,m(n) = min(Hmax, b
|fi(n)|

f0cand
(n,m)

c).

10) For each f0 candidate value and each candidate max-
imum pitch multiple order Hmax,m(n), calculate the
corresponding residual frequency (fir(n,m))m=1,..,M ,
using (3).

11) Calculate the value of f0cand
(n, m̂) at instant n such

that

m̂ = arg min
m=1...M

(|fir(n,m)− f0cand
(n,m)|).

12) If |fir(n, m̂) − f0cand
(n, m̂)| ≤ Th3 then

f0cand
(n, m̂) is kept as a potential f0 value at point n.

The threshold Th3 is the desired tolerance in frequency
identification, for instance 0 < Th3 ≤ 1 Hz.

13) For each set of potential f0 values kept at time
n, i.e. {f0cand

(n, m̂)}m̂=1,...,M̂ , if a subset of val-
ues are multiples of other ones, then keep only
the lowest value within this subset, e.g. if {80 Hz,
160 Hz, 240 Hz} and {90 Hz, 180 Hz, 270 Hz}
satisfy the conditions of steps 9)-12), then the kept
f0 candidates are {80 Hz, 90 Hz}. It should be
noted that to bypass strict numerical inaccuracies,
a kept f0 candidate value (f0,cand(n, m̂2) is consid-
ered a multiple of a smaller one, f0,cand(n, m̂1) if
mod

(
f0,cand(n,m̂2)
f0,cand(n,m̂1)

)
< Th4, where the threshold

Th4 is small enough (0 ≤ Th4 ≤ 10).
14) At the end of this process, if there are still (M̂ > 1)

f0 candidate values at point n that still satisfy the
conditions above, then choose the f0 candidate value
which highest multiple is the closest to |fi(n)|, i.e.

f0(n) = arg min
m̂=1...M̂

( mod

(
|fi(n)|

f0cand
(n, m̂)

)
).

c) Stage 3-Postprocessing:
15) Smoothing: Apply a smoothing filter, e.g. median or

linear, to the extracted f0 values to smooth the obtained
f0 contour.

16) V/UV segmentation: Apply element-wise multiplica-
tion of the smoothed f0 contour and the V/UV vector
obtained in Stage 1, to set f0 to zero in the unvoiced
frames.
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TABLE II: Pitch error measures of clean speech for all speakers

PDA VDE(%)(V→ U(%)+U→V(%)) GPE(%) FFE(%) FPE(cents)
RAPT [11] 4.70 (2.63+2.17) 4.77 5.92 42.78

PRAAT [12] 4.96 (2.89+2.07) 4.96 6.24 42.86
YIN [13] 7.15 (3.18+3.97) 7.22 8.77 41.34

SWIPE [14] 7.20 (3.35+3.85) 7.20 8.91 41.57
SHR [15] 16.02 (14.34+1.68) 19.47 20.94 41.03

Prop. 7.38 (3.01+4.37) 12.78 10.32 37.39

IV. OBJECTIVE EVALUATION

A. Evaluation protocol

1) Select a random subset from PTDB-TUG [10] containing
400 signals, equally divided between the 10 male and the
10 female speakers of the database, i.e. nearly 10% of the
whole database.

2) Mix the evaluation wave files, containing initially clean
speech, with babble noise and Gaussian white noise, at
different SNR levels, ranging from 20 dB to 0 dB, to
obtain simulated noisy speech signals.

3) Extract f0 contour from the reconstructed signals using
state-of-the-art PDA’s, namely, RAPT [11], SWIPE [14],
both provided in SPTK toolkit [16], YIN [13] and SHR
[15], using the Matlab code supplied by their respective
authors, and finally the proposed algorithm (Prop.).

4) For each pair of ground-truth and extracted f0 contours,
calculate the standard measures used in pitch detection
evaluation, i.e. V/UV decision error (VDE (%)), gross
pitch error (GPE (%)), f0 frame error (FFE (%)) and
fine pitch error (FPE (cents)). These standard measures
are usually used to assess pitch detection quality. More
details about how to calculate these metrics are in [17].

B. Evaluation results

For coherence of error measures, the same values of frame
and hop duration used for extraction of ground-truth f0 were
set for all the evaluated algorithms, i.e. 32 ms and 10 ms,
respectively. Also, the same f0 boundaries were used, i.e.
[80 Hz, 270 Hz] for male speakers and [120 Hz, 400 Hz] for
female ones. Results for clean speech are reported in Table II,
whereas Fig. 1a-Fig. 1d illustrate FFE and FPE rates for
simulated babble and white noisy speech. It is worth noting
that VDE and GPE are not explicitly shown for noisy speech,
first for insufficient room, and secondly because FFE is already
a weighted average of both rates [17].

1) Comparison to state-of-art PDA’s: Globally, the results
show that the proposed algorithm (Prop.) is in the second
range of PDA’s, with YIN [13] and SWIPE [14], after RAPT
[11] and PRAAT [12], and clearly outperforming SHR [15].
It should be emphasized that these PDA’s have been selected
for benchmarking based on their high performance for clean
and noisy speech as reported in a recent review [18].

2) Performance for clean speech: TABLE II shows that the
proposed algorithm (Prop.) does as well as SWIPE and YIN
in detecting voiced/unvoiced regions. i.e. VDE rate, especially
thanks to its low rate of false negatives, (V → U(%)).
Nevertheless, this trend slows down when looking to GPE

and consequently to FFE. Finally, TABLE II shows that the
proposed PDA (Prop.) provides the lowest FPE.

3) Performance for noisy speech: For noisy speech, the pro-
posed algorithm seems to be amongst the top PDA’s for babble
noise, particularly at high noise levels, i.e. SNR ≤ 15 dB
(cf. Fig. 1a, Fig. 1b). However, this trend is less sustained
when dealing with white noise, where the proposed algorithm
is more efficient only for low noise levels, i.e. SNR ≥ 15dB
(cf. Fig. 1c, Fig. 1d).

C. Discussion

Objective evaluation shows that the proposed algorithm is as
good as some recognized state-of-the-art PDA’s such as YIN
and SWIPE, mainly with a good voicing decision (VDE) and
especially with the best fine pitch error (FPE). However, the
weakest point of the proposed algorithm consists in its high
GPE rate, which results in a relative increase of the FFE rate,
even though it remains balanced by the low VDE rate. This
may be corrected by tuning the smoothing filter parameters. In
opposition, the strongest point is the good FPE rate obtained.
This is a twofold advantage since (i) it confirms the good
VDE rate, and (ii) it means that when there is no gross pitch
error, the f0 extracted by (Prop.) is the closest to ground-truth
values.

For noisy speech, firstly it looks that the proposed PDA’s
works better for babble noise than for white noise. This means
that it is capable to distinguish the pitch of the right speaker
amongst those of other voices. Secondly, for white noise, it
seems more adapted to low levels, i.e SNR ≥ 15dB. However,
a fine tuning of the algorithm’s thresholds may lead to better
pitch estimation for higher SNR levels.

Finally, to reduce the computational load of the instant-wise
f0 search, signal subsampling could be a convenient solution.

V. CONCLUSION

In this paper, a novel pitch detection algorithm was pro-
posed. The key idea relies on a proposed empirical relationship
between fundamental frequency (f0) and instantaneous fre-
quency (fi). This relationship stipulates that f0 contour could
be approximated as the smoothed envelope of the residual
instantaneous frequency (fir), which is calculated as the rest
of the division of the absolute value of fi by the closest
f0 multiple at each instant. The superposition of the so-
estimated f0 and the ground-truth values was verified. Then,
an algorithm was implemented based on this relationship, in
order to first detect voiced/unvoiced regions and then extract
f0 contour from fi values in the voiced parts. In comparison to
some well-rated state-of-the-art PDA’s, the proposed algorithm
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(a) FFE(%) of babble-noised speech (b) FPE(%) of babble-noised speech

(c) FFE(cents) of white-noised speech (d) FPE(cents) of white-noised speech

Fig. 1: Performance of the benchmarking PDA’s for babble and white noise at SNR levels ranging from Inf (clean) to 0 dB

has been highly successful in taking accurate V/UV decision,
and quite satisfactory in approximating f0 values in voiced
parts, either in clean or simulated noisy speech.

The proposed algorithm has two major advantages: First,
avoiding short-time analysis and thus the underlying approx-
imations about local stationarity; secondly the parametric
structure, that makes it possible to adapt pitch detection to
several sound conditions, such as type and level of noise,
gender of speaker, etc. Finally, investigating more in depth
the proposed empirical relationship between f0 and fi may
lead to make it more explainable and interpretative.
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