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Abstract—Performance of Voice Assistant (VA) deteriorates
notably when tested on the whispered speech. Hence, separate
systems are being developed for the whisper. To that effect,
detecting the incoming signal as to whether it is a whisper or a
speech (especially with a low latency) in the noisy environments is
more desirable from the model switching point of view. We pro-
pose to exploit high resolution property of group delay spectrum
(GDSPEC) to capture characteristic of excitation source (voiced
vs. unvoiced) and formant shift for the early robust detection of
the whispered speech. The effectiveness of the proposed feature
set is investigated across different deep learning-based classifiers
using three databases, namely, wTIMIT, CHAINS, and in-house
database of Samsung. We obtain 3.4%, and 5.05% relative
improvement in classification accuracy with the SEPC+GDSPEC
compared to the individual SPEC, and GDSPEC features, respec-
tively. Furthermore, robustness is shown in the presence of state-
of-the-art noises (from the MUSAN database) for different SNR
levels. Mathematical intuitions behind robustness of group delay
functions are also presented. Finally, the frame-level decision was
combined to predict whispered speech at an utterance-level based
on the majority rule for different lengths of the speech segments.

Index Terms—Whisper Detection, Spectrum, Group Delay
Function, DNN, CNN, Xception

I. INTRODUCTION

Speech technologies have made remarkable progress with
the advent of Voice Assistant (VA) since the last decade [1].
Present speech systems are mostly designed for normal speech.
However, people prefer to whisper for specific applications,
such as private conversation in public places, conversation in
library, hospital or a meeting room [2]. Significant reduction in
the performance has been observed when whispered speech is
directly applied to the speech systems that are trained on nor-
mal speech [3], [4]. Hence, research focus has been shifted for
designing various separate speech systems for the whispered
speech due to its interesting commercial applications [3]-[10].
Thus, early detection of whisper would be more valuable for
the model switching in the VA. Despite significant differences
in the formant frequencies, formant bandwidths and its shifts
(from the speech production-perception viewpoint) in normal
vs. the whispered speech [2], [11]-[17], these differences
cannot be applied directly for detection of whispered speech
[18]. This is primarily due to the fact that there are no standard
reference values for these differences [18]. For example, differ-
ences in formant frequencies, and their shifts for a particular
speaker can easily be masked by the shifts due to different
speakers. In addition, different linguistic content spoken by
different speakers also affect these differences. Hence, learning
a unique representation that can discriminate speech and the
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whisper across speakers, channel variations is a complex task.

In this paper, we propose frame-level classifier for the
robust detection of the whispered speech. This is primarily
achieved via developing whisper vs. speech classifier. The
goal is to predict whether the incoming signal to the VA
is whispered or normal speech at an utterance-level as early
as possible. Earlier approaches utilize spectral power ratio
in a low frequency band to the high frequency band [18].
In addition, spectral information entropy (SIE) ratio-based
features with Gaussian Mixture Model (GMM) classifiers have
been proposed for the classification of the whispered speech
from five different types of speech signals [19]. Recently,
Deep Neural Network (DNN), Long Short Term Memory
(LSTM) architecture with the log-filterbank energies have been
proposed for the whispered detection task at the frame-level
[6]. In addition, Convolutional Neural Network (CNN)-based
classifier to detect whispered speech at an utterance-level in the
presence of imbalance class learning [20]. However, decoding
of LSTM takes more time and hence, affect the decision
taking in real-time due to its dependency on the contextual
neighboring frames.

Here, we propose to exploit phase spectrum-based fea-
tures (i.e., high resolution group delay function) along with
the magnitude spectrum-based features for the frame-level
whisper detection task. Recently, phase-based features have
been applied for various speech applications [21]-[24]. In
addition, Fourier Transform (FT) phase-based features have
been utilized to detect emotions in the whispered speech [25].
However, phase-based features that exploit high resolution
property of group delay function have not been explored for
the detection of the whispered speech task to the best of
authors’ knowledge. The key difference between whispered
speech and normal speech is the complete absence of vocal
fold vibrations in the whispered speech (i.e., at excitation
source-level). The phase-based features are well known to
capture source-excitation related information more so for
whispered speech that has predominately unvoiced source [22],
[26]-[28], which motivated us to explore different phase-based
features for this task.The effectiveness of the proposed feature
set has been shown across different classifiers and different
databases in presence of noises (usually present in the home
and office environment) chosen from the standard open source
MUSAN database at various SNR levels [29]. Finally, the
frame-level decision is combined to predict at an utterance-
level (based on the majority for different lengths of the speech
segments) for an early detection of whispered speech.
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II. PROPOSED SYSTEMS
A. Magnitude and Phase Spectrum-based Features

In this work, we primarily explore magnitude and phase-
based features for the given task. For a given speech signal,
x(n), the Discrete-Time Fourier Transform (DTFT) of a
speech can be represented in polar form as [30]:

X(e7) = | X (eI)[ed X)), (1)

where | X (e/“)| and /X (e’*) are the magnitude and phase
spectrum, respectively, for a speech segment. Extracting dis-
criminative features from the phase spectrum is a challenging
task, since phase is not continuous in the frequency-domain
due to phase wrapping (phenomenon reflecting trigonometric
properties of arctan function). Hence, cosine operation is
applied on the unwrapped phase spectrum (i.e., Cosine Phase
Spectrum (CPSPEC)) [23]. However, phase unwrapping is
itself challenging. To alleviate this, group delay function-
based technique is applied to extract meaningful features from
the phase spectrum. Group delay function is defined as the
negative derivative of the phase spectrum w.r.t. the w, which
is given by [22], [31]:
joy _ _ A(LX(e))
T(e?V) = T

_ Xp(e7*)YR(€) + X;(e)Y(e™)
- [ X (e7)[?

where X (e/*) and Y (/%) are the DTFT of z(n) and y(n) =
nz(n), respectively. Using digital resonator design and due
to eq. (2), 7(e’*) for cascade resonator becomes additive and
thus, high resolution in frequency-domain.
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Fig. 1: An example of SPEC and GDSPEC feature for an

utterance “Change Camera Mode” for normal (Panel I) and
whispered speech (Panel II), respectively.
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We exploit this property for whisper detection task, in par-
ticular, to capture phase characteristics of source and formant
shifts. We call 7(e/*) as the group delay function-based phase
spectrum (i.e., GDSPEC). SPEC and GDSPEC feature for
normal and whispered speech is shown in Fig. 1. In both SPEC
(top row) and GDSPEC (bottom row) difference between

22

normal and corresponding whispered speech can be clearly
observed.

B. Robustness of Group Delay Function

In this sub-Section, we establish the robustness of 7(e’)
under signal degradation conditions. Let z(n) is a clean speech
degraded by uncorrelated zero-mean, additive noise, v(n) with
variance o2(e/). Then, noisy speech, z(n) is given by [22],

z(n) = z(n) + v(n). 3)
Taking DTFT on both the sides, we get,
Z(e39) = X (e2%) 4+ V(e2*). 4)

Multiplying by the corresponding complex conjugates and
taking statistical expectation operator, we have the power
spectrum,

Pz(e’) = Px(e’) + o (), )

where Pz(e/*) = E{|Z(e?*)[*}, Px(e/*) = E{|X(e*)[?},
and we assume that expectation of noise term is zero. From
Eq. (5), we have,

Taking logarithm on both sides and using Taylor series ex-
pansion of In(1 + x), and ignoring the higher order terms in
Taylor series, we get,

Px(ejw)

Po(e) = b () [1+ 55 ©

Jw
1+ Lf(e, )
o (e7)
Px(ejw)

0‘2,(61“’)

In(Py(e’)) = In (aa(eﬂ'w)[
| (7)
(') +

Since, Px(e*) is a periodic continuous function of w with
period w = 27, we can expand it as a Fourier series, and we
get,

In(Pyz(e’)) ~In(o?

oy

(7))
1 {do ‘*‘iod (271' k)} 8)
—— | = rcos| —wk ||,
op(erv)l2 wo

where dj;’s are Fourier series coefficients in the expansion of
Px (e’*). Since Px(e’¥) being E{|X (e¥)|?}, it’s an even
function and hence, coefficients of sine terms are zero. As-
suming additive noisy speech as minimum phase [31], we can
express group delay functions in terms of cepstral coefficients
[22], i.e.,

. 1 X
o S — kdycos(kw). )
()~ S army 2 Mlweos(h)

Eq. (9) shows that the group delay function of noisy speech is
inversely proportional to the noise power. In frequency region,
where the noise power is greater than the signal power, i.e.,
high noise region in the power spectrum. Thus, group delay
function of noisy speech preserves the peaks in 7z (e/’), which
are known to carry formant (resonant) structures and thus,



helps in capturing characteristics of speech in the presence of
noise. This has also positively reflected in the task of whisper
detection under signal degradation conditions.

C. Details of Classifiers

To measure the effectiveness of the proposed signal
processing-based features, DNN, CNN, and Xception network
have been explored. DNN architecture contains three hidden
layers with number of neurons, 128, 64, and 32, respectively,
followed by batch normalization, and Rectifier Linear Unit
(ReLU) activation nonlinearity. Batch normalization was
found to be helpful while generalizing the proposed model
across different databases. Sigmoid activation is applied at
the output layer. The CNN architecture with three hidden
convolutional layers followed by batch normalization, and
ReLU activation function have been also used. Motivated
from the recent studies [32]-[34], instead of fully-connected
output layer, we also used convolutional layers at the output
followed by sigmoid nonlinearity.

|
—
B T e N e S|
NxDx2
NxKxC
Input Layer First Hidden Layer
(@)
Depthwise Pointwise
separable convolutions convolutions
O—
&?\
\X‘D
—_—
NxDx2 NxDx2 NxKxC
Input Layer First Hidden layer
()

Fig. 2: Schematic representations of (a) CNN and (b) Xception
architectures. After [35]. Here N: number of features in a
batch, D: feature dimension, C: number of channel, K: feature
dimension after convolution operation.

In conventional CNN [36], both the channels are mapped
jointly with the same filter. However, cross-channel corre-
lations between both magnitude and phase spectra may be
sufficiently decoupled. Thus, depthwise separable convolution
(i.e., a spatial convolution is applied independently for each
channel), which is followed by pointwise convolution, which is
called Xception network [35]. Furthermore, two input channels
are taken one for the magnitude spectrum, and the other for
the phase spectrum. The architecture of CNN, and Xception
was almost the same except the fact that in Xception network,
different filter is learned for each channel. However, size of
the filter is the same as shown in Fig. 2. In particular, CNN
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architecture contains three convolutional layers with the filter
size 11 x 11, 7 x 7, and 5 x 5. Number of channels were
32, 16, and 8. Output layer is also convolutional in both the
architectures with the filter size 18x18 to match with the 2-D
output for applying logistic regression. Adam optimization is
used for training all the classifiers [36].

III. EXPERIMENTAL RESULTS

Statistics of the databases are shown in Table I. We have
used Samsung’s VA (namely, Bixby) for the in-house record-
ing. All the three databases contain data from the multiple
speakers. Training was done using wTIMIT database for all
the experiments. wTIMIT database was divided in three parts,
namely, Train, Validation, and Eval sets. Magnitude spectrum
(i.e., SPEC), cosine phase spectrum (i.e., CPSPEC), and
group delay-based phase spectrum (i.e., GDSPEC) features
are extracted over 25 ms Hamming window length with 10 ms
frame-shift. We follow the standard classification accuracy in
%, precision, recall, and F1-score for reporting our experimen-
tal results [37]. In the context of binary classification, accuracy
of test is measured via F1-score [37]. F1- score is the harmonic
mean of precision and recall. Best value and the worst value
for Fl-score is 1 and 0, respectively. Table II presents the
accuracy of the DNN classifier across different features. We
observe that the feature-level fusion of SPEC and GDSPEC
performs better across all the databases. In particular, there
is 3.4%, and 5.05% relative improvement with the proposed
SPEC+GDSPEC features w.r.t. the individual SPEC, and
GDSPEC features, respectively. Similar improvements have
been obtained for CNN and Xception (details not presented
due to space limitations). Table IV presents the performance of
the proposed features across different classifiers. We observe
that the proposed feature set performs consistently better
across different classifiers and the databases. Since training is
done on wWTIMIT data, it naturally leads to the better results
on WTIMIT eval test set.

TABLE I: Statistics of the Databases. Utt: Utterances

Database Whisper Normal
Duration | No. Utt. | Duration | No. Utt.
Train [11:51:22] 8170 |[11:36:51| 8203
wTIMIT |Validation| 3:58:11 | 2730 | 3:52:45 | 2730
Eval 1:00:50 | 696 | 0:59:41 698
CHAINS Eval 2:28:28 | 1332 | 2:33:08 | 1332
Inhouse | g1 | 2442 | 2652 | 2:32:42 | 2655
(Samsung)

TABLE II: Classification Accuracy for Different Feature Sets

Training — Trained on wTIMIT Train Set
Database — wTIMIT Eval| CHAINS In-house
Feature Sets | | Acc. | F1-Scr| Acc. [F1-Scr| Acc. |F1-Scr
SPEC 99.94| 99.94 198.94| 98.96 [92.78| 92.93
CPSPEC 99.98| 99.98 199.42| 99.42 | 94.7 | 94.72
GDSPEC 99.83| 99.83 |197.98| 98.03 [91.36| 91.56
SPEC + CPSPEC | 100 | 100 [99.89] 99.89 |74.19| 78.84
SPEC + GDSPEC|99.94| 99.94 [99.78| 99.79 [95.98| 95.9

Acc: Accuracy, Scr: Score

We selected approximately 20 hours of noisy data (6 hours
of noise, and 14 hours of music data from publicly available
MUSAN database [29]) to evaluate the robustness of the



TABLE III: Performance Evaluation (% Accuracy) in the Presence of the MUSAN Database for Different SNR Levels

Trained on WTIMIT Train Set with 0 dB SNR
Classifier wTIMIT Eval CHAINS In-house

Noise Level | Accuracy | Fl-Score | Accuracy | Fl-Score | Accuracy | FI-Score

Clean 99.99 99.99 99.92 99.92 91.79 92.07

DNN 10 dB SNR 99.99 99.99 99.93 99.93 89.6 90.18

0 dB SNR 99.87 99.87 96.27 96.22 82.35 84.27

-5 dB SNR 96.34 96.36 86.19 85.1 73.94 77.2

Clean 99.99 99.99 99.99 99.99 92.47 92.67

CNN 10 dB SNR 99.99 99.99 99.99 99.99 87.73 88.66

0 dB SNR 99.97 99.97 95.21 95.06 81.49 83.7

-5 dB SNR 95.78 95.82 84.23 83.07 72.38 76.19

Clean 99.99 99.99 99.97 99.97 86.03 87.21

Xception 10 dB SNR 99.99 99.99 99.96 99.96 83.47 85.23

0 dB SNR 99.85 99.85 95.55 95.43 78.4 81.38

-5 dB SNR 94.07 94 83.59 81.74 72.37 75.62

proposed system. The noise has been randomly added to all
the database for three different SNR levels of 10 dB, 0 dB,
and -5 dB (i.e., severe signal degradation). The primary goal
of the proposed system is to detect whisper speech in noisy
(signal degradation) as well as in clean conditions. Hence,
we selected proposed SPEC+GDSPEC features and trained
the system on wTIMIT database in presence of 0 dB noise.
The results for matched (i.e., trained and tested on 0 dB) and
mismatched (i.e., trained on O dB and tested on 10 dB, -
5 dB, and clean) conditions are presented in Table III. We
observed that in the presence of noise, compared to the CNN,
and Xception, on an average, DNN is performing better across
the databases. Higher values of F1-score obtained across all the
systems clearly indicate that both precision and recall of the
classifiers are having good results [37]. We believe that with
more amount of training data, and more number of hidden
layers, performance of CNN and Xception can be improved
further [35], [36].

TABLE 1IV: Classification Accuracy (in %)
SPEC+GDSPEC Features Across Different Classifiers

for

Nature Trained on wTIMIT Train Set
Database | wTIMIT Eval CHAINS In-house
Classifier| Acc. |Fl-score| Acc. |F1-Score| Acc. |F1-Score
DNN [99.94| 99.94 [99.78 | 99.79 |95.98 | 959
CNN 100 100 {99.99 | 99.99 (96.25 96.2
Xception |99.99| 99.99 |99.98 | 99.98 |94.28 | 94.27

Finally, we consider frame-level decision of each frame
belonging to the given segment of the speech, and utterance
was declared either whisper or normal based on majority of
the frame-level decision. Utterance-level decision is taken for
different amount of time from the frame-level decision. This
decision was compared at an utterance-level and corresponding
accuracies are shown for the Samsung’s in-house database for
clean and noisy cases in matched and mismatched conditions
(as shown in Fig. 3). In addition, it can be observed that from
100 ms onward, utterance-level decision almost gets converged
to its best value. This is possibly due to the fact that at any
amount of time to predict correct decision, we need only 50%
vote, and our frame-level classifiers are almost having more
than 90% accuracy. Hence, for the given number of frames,
getting 50% of the correct decision at the frame-level has
become easier, which has clearly helped in the early detection
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of the whispered speech at an utterance-level. Similar results
have been obtained for all the three databases (not shown due
to space limitations).
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Fig. 3: Utterance-level accuracy in the noisy (signal degrada-
tion) environments for Samsung’s in-house database.

IV. SUMMARY AND CONCLUSIONS

In this paper, we proposed combined magnitude and group
delay-based phase spectrum (that is known to have high
resolution than the traditional Fourier spectrum) for the early
robust detection of the whispered speech. We presented our re-
sults on three different databases, namely, wTIMIT, CHAINS,
and Samsung’s in-house database. It has been observed that
proposed SEPC+GDSPEC feature obtains 3.4%, and 5.05%
relative improvement compared to the individual SPEC, and
GDSPEC features, respectively. In addition, proposed features
performed consistently better across three different classifiers,
namely, DNN, CNN and Xception. Furthermore, robustness
of the proposed feature has been observed in presence of
state-of-the-art noises taken from the MUSAN database at
different SNR levels. Our results indicate that SPEC+GDSPEC
feature consistently perform better across, different databases,
classifiers, and under signal degradation conditions. In addi-
tion, it has been shown that with high frame-level accuracies,
it is possible to detect incoming whispered speech as early
as possible at an utterance-level based on the majority. In
future, we would like to evaluate our proposed features for
the imbalanced class learning.
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