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Abstract—This paper presents a end-to-end framework for the
F0 transformation in the context of expressive voice conversion.
A single neural network is proposed, in which a first module is
used to learn F0 representation over different temporal scales and
a second adversarial module is used to learn the transformation
from one emotion to another. The first module is composed of
a convolution layer with wavelet kernels so that the various
temporal scales of F0 variations can be efficiently encoded. The
single decomposition/transformation network allows to learn in
a end-to-end manner the F0 decomposition that are optimal with
respect to the transformation, directly from the raw F0 signal.

I. INTRODUCTION

Fundamental frequency (F0) is an essential acoustic feature
in human speech communication and human-human inter-
actions. As a key feature of speech prosody, F0 plays an
important role in every aspect of speech communication: it
conveys linguistic information (F0 helps to clarify the syntactic
structure of an utterance or is used for semantic emphasis),
para-linguistic information such as emotion or social attitude,
and is even a part of the speaker identity through his speaking
style. Accordingly, generative F0 modeling can be extremely
useful in the fields of text-to-speech [1], voice identity conver-
sion (VC) [2], and expressive voice conversion [3], by allowing
a direct and parametric control of F0 to manipulate the
expressivity of a voice (such as speaking style or emotions).
By nature, F0 variations occur over different temporal scales
each associated with specific functions, ranging from micro-
variations to macro-contours such as accentuation, emotions,
and modalities. To cover these specificities of F0 modelling,
stylization methods [4], [5] and multi-level modelling [6]–[8]
have been proposed.

Notably in VC, generative models such as Gaussian mixture
models [9] and LSTM-based Sequence-to-Sequence models
[10] were used to learn F0 transformations from neutral to
expressive speech. Lately, various works focused on the use
of Continuous Wavelet Transform (CWT), as an intermediary
representation of the F0, on which Generative Adversarial
Networks (GAN) models such as Dual-GAN [11], Cycle-
GAN [12], VAW-GAN [13] or VA-GAN [14] are trained to
learn transformations. A majority of those models is learnt on
parallel data and by emotion pairs, which allows to learn a
direct mapping between two different emotional versions of

an utterance while preserving a fixed and controlled linguistic
content.

A promising approach called CWT Adaptive Scales (CWT-
AS) was proposed by Luo et al. [11]. The CWT computes
a decomposition of the F0 signal over wavelet kernels which
allows a representation of F0 over different temporal scales
[15], with various application in expressive voice conversion
[3], [11], [13], [15], [16]. F0 modelling with CWT has
been specified more recently upgraded with the possibility to
compute the decomposition on arbitrary linguistic scales (e.g.,
phoneme, syllable, word, and utterance as described in [3]).
An Adaptive-Scale (AS) algorithm [11] is described to select
an optimal CWT representation for each pair of emotions,
by selecting the scales that maximize in average the distance
between the emotions in the CWT space.

From these selected scales, the CWT decomposition of the
F0 contours is computed. Finally, the transformation function
between each pair of emotion is learned from those repre-
sentation using a Dual-GAN. Though this approach appears
promising, it suffers from two main limitations: 1) The scale
selection is only based on the maximization of the distance
between the emotions, but ignores their reconstruction ability
of the F0 signal. This may lead to poor F0 reconstruction
which in turn would degrade the quality and the naturalness of
the transformation; 2) The CWT-AS decomposition of the F0
signal and the dual-GAN are optimized independently which
constitutes a bottleneck for training. Consequently, the CWT
decomposition may not be optimal in the sense of the dual-
GAN objective.

To overcome those limitations, we propose a end-to-end
architecture to learn efficiently F0 transformation between
emotions. The proposed neural architecture brings together the
F0 decomposition and the dual-GAN into a single network,
so that the CWT decomposition is optimized in the sense of
the dual-GAN objective, and combining separation and recon-
struction losses of the resulting decomposition. An application
to the voice conversion of social attitudes shows that the
proposed approach significantly improves the quality of the
transformation by comparison with the CWT-AS approach.
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II. PROPOSED METHOD

In this section, we introduce our proposal based on CWT-AS
[11] and show how it differs by integrating the F0 stylization
part on top of the transformation learning process which we
refer to as end-to-end method for voice F0 conversion in II-A.
Our contributions’ concepts and technical details are given in
II-B and II-C.

A. Framework overview

As our proposed VC system requires parallel data, sets of
utterances Xa and Xb respectively relative to expressivity a
and b are considered. A pair of utterances is then sampled
and F0 sequences, source xa and target xb, are extracted.
Aside from the expressivity, each utterance in a pair has the
same content (linguistic content, speaker identity). The source
and target F0 are given to what we called a Wavelet Kernel
Convolutional Encoder (WKCE) denoted We. A classifier,
denoted C, whose objective is to predict the expressivity is
fed with WKCE outputs. As shown in Figure 1, these two
modules must be seen as a pre-network (pN ) for Dual-GAN
(DG) that can be pre-trained as well as trained along with
Dual-GAN forming an end-to-end system for f0 conversion.

B. Wavelet Kernel Convolutional Autoencoder

As a multiscale modelling method, CWT is entirely fitting
when trying to represent both long and short-term dependen-
cies, prosody is influenced by. As CWT can only be applied
to continuous functions, a simple linear interpolation between
voiced F0 segments is needed to obtain a continuous phrase-
related F0 function which can then be sampled in a vector
x ∈ [0, 1]T .

Our WKCE performs convolutions between the F0 signal
x and a wavelet kernel based on a mother wavelet ψs ∈ RT

defined for a time vector t ∈ RT as
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Considering a wavelet kernel depending on N learnable
parameters s that control the width of each wavelet com-
posing the kernel, the contribution hs

x of the temporal level
s to the F0 signal x is the convolution between x and
ψs. Therefore, feed with x, our WKCE module will output
We(x) = [hs0

x , ...,h
sN
x ] ∈ RN×T . If we denote Wr the

reconstruction operation, then the reconstructed signal x̂ is
given by

x̂ =Wr(We(x)) =
dj
√
dt

CdY0

N−1∑
i=0

hsi
x + x̄ (2)

with x̄ the average of x, dt = 1.2, dj = 0.125, Cd = 3.541
and Y0 = 0.867 (for details, see [17]).

If we denote E, the mathematical expectation and consider
xa and xb sampled from source and target distributions
P (xa) and P (xb) respectively, this module can be trained for

reconstruction objective with respect to L1 loss formulated as
follows

Lrec =Exa∼P (xa)(||Wr(We(x
a)))− xa||1)+

Exb∼P (xb)(||Wr(We(x
b))− xb||1)

(3)

A constraint of classification on the CWTs latent space can
be added, We and C are trained with respect to Lcl, the cross-
entropy (CE) loss between the predicted source expressivity
â = C(We(x

a)) and the true value a summed with the CE
between b̂ and b.

Lcl =Exa∼P (xa)[a ∗ C(We(x
a))] + Exb∼P (xb)[b ∗ C(We(x

b))]

+Exb∼P (xb)(1− a)[1− log(C(We(x
a)))]

+Exa∼P (xa)(1− b)[1− log(C(We(x
b))))]

(4)

C. Model

In this paper we focus on a specific GAN network called
Dual-GAN which is capable of learning a mapping between
parallel pairs of data. This network is based on two concepts:
1) Adversarial learning [18], which is to train a generative
model to find a solution in a min-max game between two
neural networks, called as generator G and discriminator D.
2) Dual supervised learning [19] which is to train the models
of two dual tasks simultaneously exploiting the probabilistic
correlation between them to regularize the training process.
Combining those breakthroughs allows to take advantage of
the GAN’s ability to produce realistic transformations as
well as the significant improvements due to dual supervised
learning.

This second point implies that both forward and inverse
transformations, respectively Ga→b : (We(x

a), za) → xb and
Gb→a : (We(x

b, zb) → xa, are learned jointly, where za and
zb are random independant noises provided in the form of
dropout at each layer of Ga and Gb. A first loss La↔b is
required to train Ga→b, Gb→a and We.

La↔b =E(xa,xb)∼P (xa,xb)(||Wr(Ga→b(We(x
a)))− xb||1)

+E(xa,xb)∼P (xa,xb)(||Wr(Gb→a(We(x
b)))− xa||1)

(5)

In the same time, Da discriminates between converted
outputs X̂b of Ga→b and real samples of domain Xb, Db does
analogously the same to complete the adversarial mechanism.
The adversarial loss LADV is required to train Ga→b, Gb→a,
Da, Db and We

Ladv =Exa∼P (xa)[Da(We(x
a))] + Exb∼P (xb)[Db(We(x

b))]

+Exb∼P (xb)[1− log(Da(Gb→a(We(x
b))))]

+Exa∼P (xa)[1− log(Db(Ga→b(We(x
a))))]

(6)

A third constraint called Dual loss is added so as to
strengthen the intrinsic connection between Ga→b and Gb→a,
it can be understood as a regularization of the process.

Ldual = E(xa,xb)∼P (xa,xb)(||We(x
a) ∗Ga→b(We(x

a))

−We(x
b) ∗Gb→a(We(x

b))||1)
(7)
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Fig. 1. End-to-end neural architecture for F0 voice conversion. On the right, F0 decomposition over 4 of the learned scales obtained for the source (red) and
target (green) expressivities.

Therefore two final losses can be formulated for pre-Net
pretraining and proper Dual-GAN training, respectively LpN

and LDG with α, β, λ and γ respectively weighting recon-
struction, classification, transformation and dual objectives.

LpN = αLrec + βLcl (8)
LDG = λLa↔b + Ladv + γLdual (9)

III. EXPERIMENTS

A. Dataset

For our experiments we used the freely available speech
database Att-HACK [20]. The database comprises 25 speakers
interpreting 100 utterances in 4 social attitudes : friendly,
distant, dominant and seductive, later denoted FR, DIST,
DOM and SED respectively. With 3 to 5 repetitions each per
attitude for a total of around 30 hours of speech, the database
offers a wide variety of prosodic strategies in the expression
of attitudes. Prosodic features conveying expressivity has
been shown to be speaker dependent [21], for this reason,
two speakers were selected and used independently for both
training and validation : a female (F08) and a male (M07),
representing almost 400 utterances each. The train/valid split
was 80/20 % and has been done linguistically.

B. Implementation details

1) Input pipeline: We extracted fundamental frequency
from the speech signal by using SWIPEP algorithm [22]. All
F0 sequences are sampled to 1ms (as recommended in [11]),
passed to log(F0) and a linear interpolation has been processed
between voiced segments. For each pair, a mapping between
syllables starting and ending times has been done to align
source and target. Once pairs are aligned syllable-wise, F0
sequences are padded with zeros up to a value T = 4000
corresponding to the longest sentence in the dataset.

2) Architecture design: Our WKCE denoted We, with N =
32 learnable scales, has been implemented as a custom layer.
A constraint of growth has been added on the range of scales
to ensure the continuity of the learned CWTs. The output of

We of shape [32, 4000] is unpadded and temporally sliced to
form batches of shape [batch size, 32, 512].

The classifier is built using convolutional blocks composed
of three convolutional layers starting from 32 up to 128 filters.
Each block uses 3 × 3 convolutions with ReLU activation, a
dropout of 0.2, padding mode same and pooling operations
using both strides and max pooling 2D with values 2 and
4, respectively, reducing features and time. Those blocks
are followed with a flatten layer and two dense layers with
respectively, 1000 units and a ReLU activation, and 2 units
and a softmax activation.

Two configurations of our pre-network pN can be distin-
guished :
• config A : pN = {We} learns the CWT scales regarding

the CWT reconstruction objective (α = 1, β = 0)
• config B : pN = {We + C} learns the CWT scales

regarding both the CWT reconstruction and the CWT
related attitude classification objectives (α = 10, β = 1)

The architecture of the Dual-GAN itself as well as the
contribution of each module, Ga→b, Gb→a, Da and Db, in
training process are taken from [11].

3) Training procedure: We is being fed with batches of size
1 so as to allow the Dual-GAN to process on phrase related
batches. pN is pre-trained minimizing LpN depending on the
considered configuration. CWTs are learned with respect to
voiced segments by using a voicing binary mask of 1 (voiced)
and 0 (unvoiced). Then {DG + We} is trained minimizing
LDG with λ = 5 and γ = 15. For config B, the classification
scores after pre-training were passed as sample weights for
Dual-GAN training. ADAM optimizer with 0.0001 as learning
rate has been used. All codes are written in Python-Tensorflow
2.1, the baseline has been re-implemented.

IV. RESULTS AND DISCUSSIONS
A. Objective Evaluation

Considering 4 attitudes, we evaluated 12 transformations (6
forward, 6 invert), the overall results are shown in Table I,
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using the RMSE between 1) the original F0 and the recon-
struction obtained from its representation, 2) the converted F0
and the corresponding target F0. An example of conversion is
depicted in Figure 2.

First of all, we observe that the proposed end-to-end system
for F0 voice conversion outperforms the traditional baseline, in
average over all categories, for both configurations. Secondly
our most sophisticated configuration config B achieves slightly
better results than config A.

RMSE (Hz)
Models Reconstruction Transformation
baseline 17.32 21.71
config A 9.16 19.15
config B 13.4 18.83

TABLE I
A COMPARISON OF THE RMSE RESULTS OF THE baseline, config A AND

config B FOR RECONSTRUCTION AND TRANSFORMATION

« Vous - êtes-a        -        llés      -      à - la        -      plage »

baseline
config_A
config_B

Transformed F0 Target F0

F0
 (H

z)

Time (ms) Time (ms)

« Vous - êtes-a        -        llés      -      à - la        -      plage »

F0
 (H

z)

source
cwt reconstruction

« Vous  -  êtes    -   a     -   llés - à - la              -        plage »

« Vous - êtes - a         -         llés     -     à - la          -        plage »

F0
 (H

z)

Time (ms)
target 
baseline

config_A 
config_B

Fig. 2. Example of F0 transformation from distant to dominant for speaker
M07 for baseline and ours config A and config B.

B. Subjective Evaluation

We further conducted a listening experiment to compare
the two proposed configurations with the baseline CWT-AS in
terms of attitude similarity. We perform XAB test to assess the
emotion similarity by asking listeners to choose between two
converted utterances (baseline and one of our configurations)
the one which sounds more similar to the original target. The
overall results are reported in Figure 3. Our proposed system in
config B outperforms the baseline for each of the considered
transformations. The results for config A, slightly lower, still
outperforms the baseline.

Fig. 3. The XAB preference results with 95% confidence interval between
the baseline and ours config A and config B regarding attitude similarity.

C. Scales distributions

This part provides an a posteriori comparison of the F0
scales distribution as obtained by the description presented

in parts IV-A and IV-B. Each transformation (forward and
backward) between a pair of attitudes is associated with a
set of temporal scales that are used to compute the CWT
representations used for the conversion. Consequently, each
transformation can be described by a distribution of the
temporal scales that are used to convert the F0 optimally.
Figure 4 presents the distribution selected by the baseline
CWT-AS algorithm and learned by our proposed contribution,
as obtained for speaker F08 for the six pairs of attitudes.

The best performance being obtained with the config B of
the proposed contribution, we further investigated by compari-
son of the F0 scales distribution. First, one can clearly observe
that the temporal distribution of the config B is wider than the
others, the transformation covering a wide range of temporal
scales from the micro variations over the phonemes to the
global contours of the sentence. Additionally, the distributions
associated with the baseline and the config A appear mostly
independent with respect to the transformation pair, while
the distribution associated with the config B tend to be more
varied depending on the transformation pair. This suggests that
the config B may adapt more efficiently to the specificities of
each pair

Fig. 4. CWT scale distributions for the three considered algorithms: baseline,
config A and config B. For interpretation, P, SY, W and SE markers respec-
tivelly denote average duration of the phone, syllable, word and sentence
linguistic units.

V. CONCLUSION

In this paper, we propose a end-to-end framework for
F0 transformation in the context of expressive voice con-
version, bringing together the F0 decomposition in differ-
ent temporal levels and its transformation in a single net-
work. Both objective and subjective evaluations showed our
method can achieve better performance than the baseline.
We aim at generalizing for multi-speaker F0 conversion and
to avoid pair-learning by building an expressive embedding.
An online page featuring conversion examples is available at
http://recherche.ircam.fr/anasyn/VC demo/index.html.
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