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Abstract—In this paper, we propose a fast and lightweight
text-to-speech (TTS) model that generates high-quality speech
even in CPU-only environments. By leveraging the front-end
architecture of FastSpeech2, we adopt an effective generative
adversarial network (GAN) framework for waveform synthesis,
which enables training the proposed model in a fully end-to-
end manner. Since the waveform generator consists of small-
size convolutional networks, its inference speed is tremendously
fast and the number of network parameters can be reduced
by half compared to the FastSpeech2 model. However, the
generated waveform segments are often not time-aligned with
reference ones because of utilizing the predicted duration, which
reduces the reliability of the discriminator module in the GAN
framework. To solve the time mis-alignment problem, we pro-
pose a waveform alignment algorithm that synchronizes timing
information between the reference and generated waveforms. In
addition to the waveform aligning task, we include an auxiliary
mel-spectrogram prediction task to further enhance perceptual
quality. Since this task is only required for training, it does
not increase the computational complexity during the inference
stage. Objective and subjective experimental results show that
the synthesized quality of the proposed model is comparable to
that of conventional approaches.

Index Terms—on-device TTS, waveform alignment, generative
adversarial network (GAN)

I. INTRODUCTION

The quality of speech generated from recent deep learning-
based text-to-speech (TTS) models is indistinguishable from
human voices, but this generally has come at the cost of
TTS models becoming larger and more complex. In addition,
their training processes and waveform generation speeds are
inefficient and slow because the models take multiple sub-
processing steps. For example, Tacotron2 [1] consists of two
conversion steps: text to mel-spectrogram conversion by a
front-end module, and mel-spectrogram to speech waveform
generation by a neural vocoder. Since both front-end and
neural vocoder [2] modules have an auto-regressive nature, the
training and inference speeds are extremely slow. Moreover,
the number of parameters is incredibly large—approximately
28 million only for the front-end module.

Several methods such as teacher-student training [3], [4],
flow-based [5], and generative adversarial network (GAN)-
based methods [6]–[9] were proposed to increase the gen-
eration speed in neural vocoding. To further increase the
processing speed of the front-end module, CNN [10] and
transformer-based models [11] were proposed; however, they

still utilize an auto-regressive structure. FastSpeech [12] and
FastSpeech2 [13] non-autoregressively estimate latent space
embeddings of acoustic information from text inputs using
a pre-trained feature prediction module, a so-called variance
adaptor. Although the processing speeds of these methods are
remarkably fast, they need to train neural vocoders with the
estimated embeddings to generate speech waveforms.

Recently, the paradigm of TTS training has shifted from the
aforementioned two-step approaches to fully end-to-end one-
step approaches because of the success of waveform genera-
tion tasks with GANs [14]. In other words, by concatenating
front-end and GAN-based waveform generation modules, it is
possible to jointly train the two modules at once. However,
although the training process becomes much simpler, it is
not easy to obtain high-quality speech unless the training
criterion is set appropriately. In addition, the computational
complexity and the size of network vary by the structure of
the generator and discriminator in the GAN-based waveform
generation module.

In this paper, we propose a fast and compact end-to-end
TTS model by concatenating the front-end feature extraction
module from FastSpeech2 and GAN-style neural vocoders. As
mentioned above, it is possible to directly generate speech
waveforms in the GAN module using the latent space em-
beddings estimated in the front-end module. In FastSpeech2,
phonetic information is estimated from a transformer and
prosody information from a variance adaptor. To obtain high-
quality speech, the embeddings should include both phonetic
and prosody information appropriately.

However, output speech quality is degraded when the front-
end and GAN-style neural vocoding modules are simply con-
catenated to build an end-to-end TTS system. The main causes
of quality degradation are the prediction and discretization
processes in the variance adaptor. As the predicted outputs
of variance adaptors are approximated or represented by
discretized values of pitch, energy, and duration, waveforms
obtained by the generator of the GAN module are not well-
aligned with reference waveforms. This is problematic in
the discriminator module because the metrics used in the
discriminator normally assume that reference and generated
waveforms are time-synchronized. We propose an effective
waveform pre-alignment process to solve the misalignment
problem. Lastly, we additionally include an auxiliary mel-
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spectrogram prediction task with the output embeddings of
the front-end module. Due to the perceptually-motivated fre-
quency characteristic, the quality of synthesized speech can
be further improved. Similar to the problem occurring in
the waveform generation process, predicted mel-spectrograms
can also be affected by discretization, resulting in frame
misalignment between target and predicted mel-spectrograms.
We propose a locally matched spectral distance metric that
considers delays to the predicted mel-spectrograms.

Our main contributions are as follows: 1) we propose a fast
and lightweight on-device TTS framework by concatenating
a non-autoregressive feature extraction module and a GAN-
style waveform generation network module; 2) we propose an
effective cross-correlation based segment alignment process
to reliably measure the similarity between reference and gen-
erated waveforms in the discriminator network; 3) we further
improve perceptual quality by applying perceptually motivated
auxiliary feature prediction loss.

II. RELATED WORKS

A. FastSpeech2

FastSpeech2 [13] is a transformer-based non-autoregressive
TTS model. Since FastSpeech2 directly predicts prosody-
related information such as duration, pitch, and energy using
a jointly trained variance adaptor network, its generation
speed is remarkably fast. Speech waveforms can be generated
by either predicted mel-spectrograms with neural vocoding
or a waveform decoding process. However, since waveform
generation modules of the model require large networks, there
is still room for reducing the size and complexity of the model.
We use the front-end part of FastSpeech2 as our baseline for
feature extraction, and introduce a light weight and fast GAN-
style network to speed up the waveform generation process and
reduce the model size.

B. GAN-based waveform generation

MelGAN [6] and HiFi-GAN [8] are typical examples of
GAN-based neural vocoders. With a simple generator and
a multi-scale discriminator (MSD), MelGAN greatly reduces
model size and increases generation speed. Motivated by Mel-
GAN, HiFi-GAN jointly utilizes a multi-period discriminator
(MPD) as well as MSD. MPD faithfully captures the structural
differences of equally spaced samples between the reference
and generated waveforms, i.e. periodicity; thus, synthesized
speech quality can be further enhanced. The architectures
of the generator and discriminator in MelGAN and HiFi-
GAN must be adjusted when their input features are not mel-
spectrograms.

GAN-TTS is a GAN-style neural vocoder that generates
speech waveforms by conditioning on linguistic and pitch
information. It consists of two discriminators that use multi-
frequency random windows. One of them is designed to
consider linguistic conditions and the other is designed not to
consider any specific information. These two discriminators
use segments of speech as targets, and generate corresponding
speech segments using a simple index-wise approach. To

Fig. 1: Training and inference stages of our model

reliably measure discriminator scores, the waveform generator
must synthesize waveform segments that are time-aligned with
reference speech waveforms. End-to-end adversarial text-to-
speech (ETAS) [14] is a fully end-to-end TTS model that also
utilizes a GAN. The model is composed of an aligner and a
decoder. The aligner produces low-frequency (200Hz) aligned
embeddings using text/phoneme inputs. The decoder utilizes
the GAN-TTS generator module and upsamples the obtained
embeddings to obtain raw speech waveforms.

III. PROPOSED END-TO-END TTS MODEL

A. Overall block diagram

Fig. 1 illustrates the overall structure of our proposed model.
The proposed model consists of a text encoder, a variance
adaptor, a waveform generator with a discriminator, and an
auxiliary mel-spectrogram feature prediction decoder. The text
encoder estimates latent space phonetic embeddings, and then
the phonetic embeddings are calibrated by the variance adap-
tor. The variance adaptor predicts prosody information such
as pitch, duration, and energy terms, which is then added to
the corresponding positions of phonetic embeddings. The text
encoder and the variance adaptor are taken from the front-end
module of FastSpeech2. The GAN-based waveform generator
transforms the input embeddings into segments of speech
waveforms using a convolutional neural network architecture.
Our discriminator consists of two sub-discriminators: multi-
scale discriminator (MSD) from MelGAN and multi-period
discriminator (MPD) from HiFi-GAN. Those modules return
the degree of differences of the pairs of reference and predicted
speech segments. The auxiliary feature decoder predicts mel-
spectrograms from the latent embeddings estimated in the
front-end module, then computes an auxiliary mel-spectrogram
prediction loss for back-propagation, which helps generate
perceptually motivated latent embeddings. We used speech
segments roughly 400ms in length (8,192 samples with a
sampling frequency of 22.05 kHz) for training.

B. Discriminator scores in mis-aligned waveforms

The synthesized output quality of the proposed TTS model
mentioned above is often degraded because of unreliable
discriminator performance, especially when reference and
generated speech segments are mis-aligned in time. In the
proposed model, the duration and pitch interval of the phonetic
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Fig. 2: Discriminator scores of MPD and MSD modules
from only changing sample delays. The discriminator score
is calculated by the sum of the waveform generator loss from
the discriminator and feature matching loss, i.e. LAdv(G;D)+
λfmLFM (G;D). It is defined in Subsection III-D.

information are determined by the variance adaptor module.
However, we cannot perfectly synchronize the duration and
pitch with the reference waveforms because of the prediction
process and discretization step in the variance adaptor module.
We found out that discriminator scores become inconsistent
when the reference and generated waveforms are not syn-
chronized. To validate our observation on the problem of
waveform misalignment in the training process, we measured
discriminator scores of the MSD and MPD modules using
reference and time-shifted waveforms.

Fig. 2 shows the average discriminator scores of the MSD
and MPD modules obtained by changing sample delays. The
MSD module is immensely sensitive to misalignment because
the average pooling process of the original and shifted signals
changes signal characteristics. On the other hand, the MPD
module is not affected by misalignment because it is designed
to measure periodicity, while the periodicity of original and
shifted ones do not change much from sample delays.

C. Waveform alignment process

From the experiments mentioned above, we realize that it is
crucial to time-align the generated waveforms with the refer-
ence ones to effectively perform adversarial training. To solve
the problem caused by mis-alignment, we propose a batch-
wise cross-correlation method that finds the best matched
speech segments from the predicted speech waveforms.

The overall process is illustrated in Fig.3. The process
begins with the selection of embedding blocks with margins.
N is the maximum length of an embedding in a batch, and
the length of the core embedding block corresponding to the
target waveform is set to 32. By including one additional
block before and after the core embedding block, we obtain a
batch with a total length of 34. The waveform generator (WG)
generates speech samples that are up-sampled by 256 times;
thus, the length of the generated waveform segment is 8704.
By applying batch-wise cross-correlation, we obtain predicted
segments that are well-matched with target waveforms. Note
that we only need to calculate cross-correlation for the lag of
2×256 indices; thus, the cross-correlation processing does not

Fig. 3: Cross-correlation-based waveform alignment process.
The dark colored parts are the desired target embedding
blocks, and the light colored parts are margins needed for
correlation matching.

Fig. 4: Generated waveforms before and after the time align-
ment process. The upper one is before applying the alignment
process, and the below one is after the alignment process.

significantly increase training time. Fig. 4 shows an example
of generated waveforms before and after the time alignment
process. Compared to the upper one that does not apply the
alignment process, the time-aligned waveform (below figure)
tends to follow the shape of reference waveform more alike
especially at both ends.

D. Training objective

The overall training losses of our model are as follows:

LG = LAdv(G;D) + λfmLFM (G;D) (1)
+ λmelLMel(G) + λttsLTTS(G)

LD = LAdv(D;G) (2)
LTTS(x) = LV ar(x) + Laux(x) (3)
LV ar(x) = E[||(d, p, e)− (d, p, e)′||] (4)
Laux(x) = E[||mel −mel′||1]

+
1

K

K∑
k=1

[||melk −mel′k||1] (5)

, where λfm = 2, λmel = 45 and λtts = 1.
Due to the nature of GAN training, the training criterion

of the proposed method consists of generator loss LG (1) and
discriminator loss LD (2), where LAdv(G;D), LFM (G;D),
LMel(G), and LTTS(G) denote waveform generator loss,
feature matching loss, mel-spectrogram loss, and TTS loss,
respectively. The waveform generator and discriminator use
LS-GAN [15] loss to avoid a vanishing gradient problem.
The feature matching loss measures the L1 distance between
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intermediate embeddings between reference and generated
speech taken from the discriminator. The mel-spectrogram
loss that measures the spectral distance between reference and
generated speech is also used to improve training efficiency
and perceptual quality.

The TTS loss (3) is composed of variance adaptor loss LV ar

(4) and feature prediction loss Laux (5): where x, d, p, e,K
are input text, duration, pitch, energy and number of chunks,
respectively. The variance adaptor loss is measured by the
L2 distance between target and predicted pitch, duration and
energy. In addition, we use L1 loss between the target and
predicted mel-spectrograms as an auxiliary task. We added the
chunk-wise aligned spectral distance to compensate for delays
in predicted features. The method uses chunks of target and
predicted features that have a length of 8 and executes an
alignment process that is similar to the one in the waveform
alignment process. The spectral matching loss was included in
the criterion when the training step reaches 300k. Otherwise,
the overall performance degrades because the untrained feature
prediction module generates distorted outputs at the early
training stage of the model. As mel-spectrograms use a mel-
scale that is highly related to human perception, we expect that
the model emphasizes perceptually more important frequency
bands, resulting in better performance.

Although LMel(G) and Laux(x) both measure mel-
spectrogram distances, they do so in different ways. When
we calculate LMel(G), mel-spectrograms are computed with
waveform segments obtained from the output of the generator,
which focus on the local part of training. To calculate Laux(x),
the predicted mel-spectrogram is taken from the auxiliary
feature prediction decoder that corresponds to the whole
sentence, influencing the global part of model training.

IV. EXPERIMENTAL RESULTS

A. Data and model setup

In our experiments, we used the LJSpeech dataset, which
is composed of around 24 hours of audio clips recorded by
single female speaker. We used a 22.05kHz sampling rate and
trimmed silence using alignment information earned by MFA
tools. The features such as energy, pitch, duration and mel-
spectrograms were extracted with the analysis window and fast
Fourier transform length of 1024 and hop length of 256. In
our model, the encoder and feature decoder are formed using
multiple layers of a feedforward transformer block that con-
sists of multi-head attention, 2-layer 1D convolution block and
batch normalization with residual connections. The variance
adaptor is composed of duration, pitch, and energy predictors.
Each predictor consists of two 1D convolutional layers with
layer normalization and dropout in between, followed by a
linear layer to predict variance factors (duration, pitch, energy).
We follow the architecture of HiFi-GAN for the waveform
generator and discriminator blocks in our model. We trained
the model for 800k steps with a batch size of 16 on a single
Nvidia GTX-1080 Ti GPU. To generate the samples, we only
used a CPU-only processor, Intel(R) Core(TM) i7-7700 CPU
@ 3.60GHz, with a single thread.

TABLE I: Model size and generation speed. The input texts
consist of roughly 200 characters each.

Model type # of parameters Generation speed(RTF)
Tacotron2 + HifiGAN 29.4M 0.718
FastSpeech2 + HifiGAN 28.4M 0.292
Proposed model 14.4M 0.199

B. Model size and generation speed

In this section, we compare model size and generation
speed. For comparison, we also include results from pre-
trained Tacotron2 and FastSpeech2 with the pre-trained HiFi-
GAN vocoder. Note that the spectral matching (SM), wave-
form alignment process (WAP) and mel feature prediction
(MFP) processes were only used for training; thus, there is
no impact on generation speed and model size at inference
time. The model size was measured in terms of the number of
parameters. As shown in Table I, Tacotron2 and FastSpeech2
require more than 28M parameters in total. On the other hand,
our model requires only 14.4M, about half the number of
parameters compared to the two conventional models.

The generation speed was measured using the real-time
factor (RTF) scale. The RTF is defined as the time spent (in
seconds) for the model to generate one second of speech; thus,
the higher the value, the lower the generation speed. As our
main objective is to develop a method for on-device TTS,
we only measured generation speed in a CPU environment by
limiting the process to a single thread. The pieces of input text
that were used in this experiment had roughly 200 characters
each, which is challenging. As shown in Table I, the Tacotron2
model had the highest RTF, which was about 2.5 times slower
than the FastSpeech2 model. This is because it has an auto-
regressive structure, unlike the other models. On the other
hand, our proposed model is about 1.5 times faster than the
FastSpeech2 model because we directly synthesize the speech
without predicting intermediate features in the inference stage.

C. Mean opinion score

To evaluate the perceptual quality of the models, we con-
ducted a MOS test. Sixteen participants were asked to give
scores from 1 to 5, where a higher score indicated better
performance. We also include ablation tests to validate our
assumptions. To compare the performance with other state-of-
the-art TTS models, we included Tacotron2 and FastSpeech2
with pre-trained GAN-based vocoders in the MOS test. As
shown in Table II, Tacotron2 had the highest score because
of using an auto-regressive structure that reflects contextual
flow better. The FastSpeech2 model received an average score
of 3.89, indicating that the model generates audio samples of
reasonable quality. On the other hand, our proposed model
had an average score of 3.93, slightly outperforming the
FastSpeech2 model. Ablation test results show that all of
the proposed approaches (spectral matching (SM), mel-feature
prediction (MFP), and waveform alignment process (WAP))
are helpful for improving perceptual quality. The effectiveness
of SM and MFP were higher than that of WAP.
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TABLE II: MOS results with 95% confidence intervals
(SM: spectral matching, MFP: mel-feature prediction, WAP:

waveform alignment process)

Number Model description MOS
1 Tacotron2 + HifiGAN 4.16± 0.09
2 FastSpeech2 + HifiGAN 3.89± 0.10
3 Proposed model (PM) 3.93± 0.09
4 PM without SM 3.78± 0.09
5 PM without SM and MFP 3.55± 0.10
6 PM without SM and WAP 3.62± 0.11
7 PM without SM, WAP and MFP 3.42± 0.10

TABLE III: Objective measurements

Number Model type MCD (dB) F0 RMSE (Hz)
2 Baseline model 6.44 70.38
4 Proposed model 6.10 53.50
7 Vanilla model 6.49 54.78

D. Objective measurement

We also included objective measurement scores [16]: mel-
cepstral distance (MCD) and F0 root mean square error
(RMSE). Since these metrics are difficult to use in the infer-
ence stage because the predicted prosody features are different
from the ground truth, we used the samples in the validation
stage instead. In this stage, rather than predicting variance
embeddings from input text, it uses reference duration, pitch
and energy. Thus, the prosodies of the generated waveforms
are similar to the ground truth. As shown in Table III, all
of the tested models received similar MCD scores, but our
proposed model had the best score. Baseline model denotes
FastSpeech2, and Vanilla model denotes model number 7 in
Table II. Our proposed model also had the best score for the
F0 RMSE metric. We believe that this is because the Baseline
model accumulates distortions by taking a two step approach
in the generation process.

V. CONCLUSION

In this paper, we have proposed an end-to-end on-device
text-to-speech (TTS) system framework that significantly re-
duces model size and complexity by directly concatenating
a GAN-style waveform generator to the front-end module.
To overcome the time-domain mis-alignment problem of the
proposed system, we proposed alignment processes for the
generated speech waveform and mel-spectrograms. With these
alignment processes, the discriminator module and auxiliary
feature prediction loss are able to fairly compare the sim-
ilarities between target and generated parameters, resulting
in improved performance. For future work, there still remain
challenges in model size, complexity, and quality. As most
parts of our model are based on CNNs, we expect that more
effective model compression methods [17] will be needed to
further reduce the size and complexity. To further enhance
synthesized quality, it is necessary to re-design the front-
end module to effectively estimate latent embeddings for
representing phonetic and prosody information. Introducing
other types of auxiliary feature prediction modules may be
another feasible direction.
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