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Abstract—In lossless audio compression, it is essential for
predictive residuals to remain sparse when applying entropy
codings. Hence, developing an accurate predictive method is
crucial. The sign algorithm (SA) is a conventional method for
minimizing the magnitude of residuals; however, it exhibits poor
convergence performance compared with the least mean square
(LMS) algorithm. To overcome the convergence performance
degradation, we proposed novel adaptive algorithms based on
a natural gradient: the natural gradient sign algorithm (NGSA)
and normalized NGSA (NNGSA). We also propose an efficient
update method for the natural gradient based on the AR(p)
model. It requires O(p) multiply-add operations at every adap-
tation step. Through experiments conducted using toy data
and real music data, we showed that the proposed algorithms
achieve better convergence performance than the SA does. The
NNGSA suggested having good compression ability in lossless
audio coding.

Index Terms—Lossless audio coding, adaptive algorithm, sign
algorithm, natural gradient method, autoregressive model

I. INTRODUCTION

A greater storage capacity is required to enrich digital
audio content further [1]. Therefore, lossless audio coding,
which involves compressing audio data without information
loss, is a vital technology for various applications, such
as lossless music delivery, editing, and recording. Figure 1
depicts the general structure of a lossless audio codec [2].
First, a codec converts the audio signal to a residual via
prediction using a mathematical model. Second, it compresses
the residual through entropy coding. If a model obtains an
accurate prediction, the residual signal is sparse, and thus, high
compression performance can be achieved. Several codecs that
follow the structure shown in Fig. 1 have been implemented
since the introduction of the Shorten lossless codec [3]. For
example, MPEG4-ALS [4] and FLAC [5] use linear predictive
coding (LPC) as the predictive model, while WavPack [6]
and TTA [7] use adaptive filters. In entropy coding, the

Fig. 1. Lossless audio codec

Golomb-Rice code [8] is generally used. This code is optimal
when the residual follows a Laplace distribution. However,
the aforementioned predictive models are generally formu-
lated based on the assumption that the residual follows a
Gaussian distribution. To solve this problem, [9] improved
compression rate by formulating an LPC under a Laplace
distribution. The sign algorithm (SA) [10] is a practical choice
for the adaptive algorithm when the residual follows a Laplace
distribution; however, the SA converges considerably slower
than the least mean square (LMS) algorithm does [11]. To
overcome this performance gap, several variants of the SA
have been proposed, such as the convex combination [12] and
the logarithmic cost function [13]. However, these attempts
did not show better convergence performance than that of the
normalized LMS (NLMS) did. For the LMS, meanwhile, [14]
outperforms NLMS by employing a natural gradient [15].

In this study, we improve the convergence performance of
the SA using a natural gradient. The major contributions of
this study are as follows:

1) We proposed novel adaptive algorithms: natural gra-
dient sign algorithm (NGSA) and normalized NGSA
(NNGSA).

2) These algorithms employ O(p) multiply-add operations
for calculating the natural gradient at every step based
on the p-th order autoregressive model assumption for
input data.

3) The proposed algorithms achieve better convergence
performance than the SA does.

The remainder of this paper is organized as follows: Section
II provides an overview of the adaptive algorithm, SA, and
autoregressive model. Section III presents the NGSA and
NNGSA and describes the efficient calculation processes in
these algorithms. Computer-based experiments conducted to
demonstrate the performance of the proposed algorithms are
discussed in Section IV. Finally, Sections V and VI present
the discussion and the conclusion, respectively.

II. THEORETICAL OVERVIEW

A. Adaptive filter

An overview of an adaptive filter is shown in Fig. 2. The
input signal x[n] and observation noise v[n] are discrete-time
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Fig. 2. Adaptive filter

signal sequences. In this study, the input signal x[n] is assumed
to have weak stationarity and to be an ergodic process. Let
h[n] = [h1[n], ..., hN [n]]T be the adaptive filter coefficients,
where T represents the matrix transposition. This study em-
ploys a finite impulse response filter. Hence, the filter output is
denoted as h[n]Tx[n], where x[n] = [x[n−N +1], ..., x[n]]T

represents the input vector. We denote the coefficient vector
for an unknown system as h∗. Filter adaptation is performed
by updating the coefficients h[n] through the observed signal

d[n] := h∗Tx[n] + v[n], (1)

and the residual

ε[n] := d[n]− h[n]Tx[n]. (2)

B. Sign algorithm (SA)

The SA is derived using the maximum likelihood method
under the assumption that the residual ε[n] follows a Laplace
distribution. The probability density function of the Laplace
distribution p(ε[n] | h) is

p(ε[n] | h) = 1

2σ
exp

[
−|ε[n]|

σ

]
, (3)

where σ > 0 represents the deviation. The likelihood L(h)
and log-likelihood logL(h) functions for independent and
identically distributed (i.i.d.) M samples are expressed as

L(h) =
1

(2σ)M

M∏
k=1

exp

[
−|ε[k]|

σ

]
. (4)

logL(h) = −M log(2σ)− 1

σ

M∑
k=1

|ε[k]|. (5)

We let M = 1 because the SA adapts at each step. To
maximize the likelihood, we take the partial differentiation
of logL(h) by h

∂ logL(h)

∂h
=

1

σ
sgn(ε[n])x[n], (6)

where sgn(·) denotes the sign function, which is defined as

sgn(x) =

 1 (x > 0)
0 (x = 0)
−1 (x < 0)

. (7)

The SA adaptation rule is shown in Eq. (6):

h[n+ 1] = h[n] + µ sgn(ε[n])x[n], (8)

where µ > 0 denotes the step-size parameter.

C. Autoregressive model

We denote AR(p) for the autoregressive model with order
p, which satisfies the following equation for signal s:

s[n] =

p∑
i=1

ψis[n− i] + ν[n], ψi ∈ R (i = 1, ..., p), (9)

where ν[n] is a sample from an independent standard normal
distribution. The i-th row and j-th column element of the
inverse autocovariance matrix for an AR(p) process K−1p is
calculated explicitly as [16]

(K−1p )ij =



j∑
k=1

ψi−kψj−k 1 ≤ i ≤ p+ 1

L−i+1∑
k=1

ψL−i+1−kψL−j+1−k L− p ≤ j ≤ L

0 i ≥ j + p+ 1
j∑

k=i−p

ψi−kψj−k otherwise

,

(10)

where i ≥ j, ψ0 = 1, and L denotes a matrix size that satisfies
L > 2p.

III. PROPOSED ALGORITHMS

A. Natural gradient sign algorithm (NGSA)

The natural gradient is derived from the multiplication of
an inverse of a Fisher information matrix F−1 and a gradient
of the cost function [15]. The matrix F is calculated using the
covariance of the gradient for the log-likelihood function (Eq.
(6)), as follows:

F := E

[{
∂ logL(h)

∂h

}{
∂ logL(h)

∂h

}T
]

(11)

= E

[{
sgn(ε[n])

σ

}2

x[n]x[n]T

]
(12)

=
1

σ2
E
[
x[n]x[n]T

]
(a.s.) (13)

=
1

σ2
R, (14)

where R is the autocorrelation matrix of the input signal. Eq.
(13) holds because {sgn(x)}2 = 1 is satisfied if x 6= 0. Using
Eq. (14), we obtain the NGSA as follows:

h[n+ 1] = h[n] + µNGSA sgn(ε[n])R−1x[n], (15)

where µNGSA denotes the step-size parameter, and R is
assumed to be a regular matrix. In addition, the NGSA can be
derived by replacing ε[n] with sgn(ε[n]) in the LMS/Newton
algorithm [17], which is an approximation of the Newton
method for the LMS algorithm.

The NGSA adaptation rule (Eq. (15)) satisfies the following
inequality:

lim
n→∞

1

n

n∑
k=1

E [|ε[k]|] ≤ εmin + µNGSA
h

λmin
, (16)
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where εmin = E [|v[n]|], h = (1/2)E
[
||x[n]||22

]
, and λmin

denotes the minimum eigenvalue of R. The proof of Eq. (16)
follows that provided in [11].

B. Normalized natural gradient sign algorithm (NNGSA)

The NGSA experiences difficulty in determining the step-
size parameter µNGSA because it has varying optimal settings
based on the input signal. To overcome this difficulty, we
introduce a variable step-size adaptation that minimizes the
posterior residual criterion. This is identical to that in NLMS
[18].

Let µ[n] be the adaptive step size and ε+[n] be the posterior
residual at time n. Then, ε+[n] is calculated as

ε+[n] := d[n]− h[n+ 1]Tx[n] (17)

= d[n]−
{
h[n] + µ[n] sgn(ε[n])R−1x[n]

}T
x[n]

(18)

= ε[n]− µ[n] sgn(ε[n])x[n]TR−1x[n]. (19)

We let ε+[n] = 0; then, solving Eq. (19) according to µ[n],
we obtain

µ[n] =
|ε[n]|

x[n]TR−1x[n]
. (20)

Substituting Eq. (20) into Eq. (15), we obtain the NNGSA as
follows:

h[n+ 1] = h[n] + µNNGSA
ε[n]

x[n]TR−1x[n]
R−1x[n], (21)

where µNNGSA > 0 denotes the scale parameter. If µNNGSA <
2 holds and h[n] and x[n] are statistically independent, this
adaptation rule achieves a first-order convergence rate. The
proof of this proposition follows that of the NLMS provided
in [18].

The NNGSA can be interpreted as a variable step-size
modification of the LMS/Newton algorithm [19]. In [20], the
authors state that [19] is a generalization of the recursive
least squares (RLS). Furthermore, it is evident that Eq. (21) is
identical to the NLMS if R = I , where I denotes the identity
matrix.

C. Geometric interpretation of NNGSA

The adaptation rule in Eq. (21) is used to solve the following
optimization problem:

argmin
h

(h− h[n])TR(h− h[n]),

subject to: d[n] = hTx[n].
(22)

The Lagrange multiplier can be used to solve the afore-
mentioned problem. Therefore, Eq. (21) projects h[n] onto
hyperplane W = {h | d[n] = hTx[n]}, where its metric is
defined as R (see Fig. 3). Moreover, according to information
geometry [21], the Kullback-Leibler divergence KL [·||·] for

h[n]

h[n+ 1]W

Length:
|ε[n]|√

x[n]TR−1x[n]

Fig. 3. Geometric interpretation of NNGSA

models that belong to the neighborhoods of parameter h[n]
can be calculated as

KL [p(ε[n] | h[n])||p(ε[n] | h)]

≈ 1

2
(h− h[n])TF (h− h[n]) (23)

=
1

2σ2
(h− h[n])TR(h− h[n]). (24)

Thus, Eq. (21) can be considered the m-projection from the
model p(ε[n] | h[n]) to the statistical manifold M = {p(ε[n] |
h) | d[n] = hTx[n]} wherein elements have the minimum
posterior residual.

D. Efficient natural gradient updation

It is vital to calculate the natural gradient R−1x[n] at
every step. Although the Sherman-Morrison formula is used
to reduce the complexity of the RLS, this algorithm involves
O(N2) operations, which entails high costs in practical appli-
cations. Hence, we propose an efficient method to solve this
problem.

Herein, we assume that input signals follow the AR(p)
process. The natural gradient at time n m[n] =
[m1[n], ...,mN [n]]T := K−1p x[n] can be updated as

K−1p x[n+ 1] =


m2[n]
m3[n]

...
mN [n]

0

+m1[n]


ψ1

ψ2

...
ψp

0N−p



−mN [n+ 1]


0N−p−1
ψp

...
ψ1

−1

 ,

mN [n+ 1] = x[n+ 1]−
p∑

i=1

ψix[n+ 1− i],

(25)

where 0N is an N × 1 zero vector. Eq. (25) is followed
by a direct calculation employing Eq. (10). Furthermore, the
Mahalanobis norm x[n]TK−1p x[n] can be updated as follows:

x[n+ 1]TK−1p x[n+ 1]

= x[n]TK−1p x[n]−m1[n]
2 +mN [n+ 1]2. (26)

Eq. (25) requires 3p multiply-add (subtract) calculations, and
Eq. (26) requires 2. Hence, we can update the natural gradient
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Algorithm 1 NNGSA with AR(p) assumption
Require: Desired output d[n], Input x[n], Number of inputs M ,

Filter order N , Scale size µ, Autoregressive order p, Small constant
c > 0

Ensure: Residual ε[n]
Calculate ψi (i = 1, ..., p) by Levinson-Durbin algorithm [24]
m← 0, h← 0, w ← 0
for i = 1, · · · ,M do

x[i]← [x[i−N + 1], ..., x[i]]T x[j] = 0 s.t. j ≤ 0
ε[i]← d[i]− hTx[i]
w ← w − (m)21
for j = 1, · · · , p do

(m)j+1 ← (m)j+1 + ψj(m)1
end for
for j = 1, · · · , N − 1 do

(m)j ← (m)j+1

end for
(m)N ← x[i]−

∑p
j=1 ψjx[i− j]

for j = 1, · · · , p do
(m)N−j ← (m)N−j − ψj(m)N

end for
w ← w + (m)2N
h← h+ (µε[i]/max{w, c})m

end for

in O(p) operations. Eq. (25) is essentially the same as that in
[22], which applies a lattice filter (with partial autocorrelation
coefficients) to update the gradient. Meanwhile, our method is
applicable for updating norms.

We can apply this procedure to the LMS/Newton algorithm:

h[n+ 1] = h[n] + µLMSNR
−1
p x[n], R−1p := σ−1p K−1p ,

(27)

where µLMSN > 0 denotes the step-size parameter, and σp is
a constant that depends on p. For p = 1, Eq. (27) achieves a
first-order convergence if µLMSN < 2(1 − ψ1)/(N(1 + ψ1)).
The proof of this proposition follows that of the LMS provided
in [17] and the employs range of eigenvalues of R1 [23].

E. Algorithm

Algorithm 1 describes the NNGSA coding procedure under
the AR(p) assumption.

IV. EXPERIMENTS

A. Toy-data experiments

We observed the convergence performance under the artifi-
cial setting as follows: The elements of the unknown parameter
h∗ were randomly chosen with a uniform distribution of
[−1, 1], filter order N was set to 5, and the observation noise
v[n] was white Gaussian noise with a variance of −40 [dB].
These settings were referenced from [13]. We calculated the
mean square deviation (MSD) criteria ||h∗ − h||2 from 200
independent trials. We set p = 1 and step sizes for the
proposed algorithms as µNGSA = 0.01, µNNGSA = 0.1, and
µLMSN = 0.01. We implemented algorithms by the Python
3.8.1 and simulated on the Intel(R) Core-i7 2.8 [GHz] Dual
Core CPU with 16 [GB] RAM.

First, we tracked the MSD learning curves for x[n] with
a variance of 0 [dB]. Fig. 4 shows a comparison between
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Fig. 4. Learning curves for the white Gaussian noise input
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Fig. 5. Learning curves for correlated noise input

the proposed algorithms and the SA, NLMS, and RLS. We
set various step sizes for the SA and NLMS and employed
forgetting factors λ for the RLS. Fig. 4 shows that the NGSA
and NNGSA achieved almost the same performance as the SA
and NLMS did, respectively. This is because R−11 ≈ I holds
for i.i.d. noise input.

Second, we observed the case in which the Gaussian noise
is correlated with x[n]← x[n] + x[n− 1]× 0.8. Fig. 5 shows
the results for the correlation. The convergence performance
of the SA and NLMS is worse than that of the non-correlated
noise input (Fig. 4). Moreover, the steady-state errors for the
proposed algorithms also deteriorated. This is because R is
close to being ill-conditioned, and the right-hand side of Eq.
(16) is large.

B. Real-data experiments

We observed the absolute error (AE) for filter prediction
using real music data [25]. In this experiment, we assumed
that the input data is only an audio data signal and that the
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reference output and observation noise are zero (silence). We
set the same configurations for the proposed algorithms as in
the toy-data experiments. Fig. 6 shows the AE curves in the
first one second (at a 44100 [Hz] sampling rate) for the left
channel of the “When the Saints Go Marching in”. Fig. 6
indicates that the NNGSA and LMS/Newton performs better
than the NLMS does and approximately the same as the RLS
does. However, the NGSA with AR(1) exhibits considerably
worse performance. We assume that this is because of a worse
steady-state error of the NGSA, which was arisen from a long-
term (≈ 10000 samples) signal stationary.

V. DISCUSSION

The proposed algorithms evidently achieved better conver-
gence performance than the SA and NLMS did for correlated
signal inputs. Furthermore, the NNGSA and LMS/Newton
algorithms exhibited similar performance to that of the RLS,
as indicated in [20]. We concluded that the NNGSA suggested
being a more accurate predictive algorithm than the SA and
practical for lossless audio codec. However, the proposed algo-
rithms suffer from two major problems with regard to practical
applications. First, the matrix R needs to be a singular matrix
that depends on input signals, such as a constant wave. To
address this, we consider introducing regularization, that is,
we calculate the inverse matrix for R + γI (γ > 0) instead
of R. Second, the AR coefficients ψi (i = 1, ..., p) need to
be calculated before the adaptation process. This can lead to
some difficulties in streaming data processing.

VI. CONCLUSION

We proposed two novel adaptive algorithms that introduce
a natural gradient into the SA. The adaptive step-size al-
gorithm (NNGSA) exhibited certain similarities with well-
known algorithms such as the NLMS and RLS. Furthermore,
we demonstrated the superior performance of the proposed
algorithms compared with that of the SA via toy-data and real-
music-data experiments. In a future study, we will introduce
an iterative method for the estimation of AR coefficients and

expansion methods for affine projection algorithms [18], and
integrate them into lossless audio compression to evaluate the
proposed algorithms.
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[23] U. Grenander and G. Szegö, Toeplitz forms and their applications. Univ
of California Press, 1958.

[24] J. E. Markel and A. H. Gray, Linear Prediction of Speech. Berlin,
Heidelberg: Springer-Verlag, 1982.

[25] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “Rwc music
database: Popular, classical and jazz music databases.” in Ismir, vol. 2,
2002, pp. 287–288.

55


