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Abstract—We propose a framework for improved sound field
translation of higher-order Ambisonics signals extending the
limits of conventional methods. In a first stage, the input signal
is upscaled to an increased spherical harmonics truncation order
using sparse plane wave recovery. This allows to provide addi-
tional spatial information to the second stage where any existing
translation method can be used. In order to gain insights into
the system’s behavior, key parameters are assessed individually.
We demonstrate the potential of the proposed framework by
operating the plane wave translation with large displacements
beyond its original capabilities. In an extensive simulation, the
performance could be improved significantly. Our proposition
may find application in recorded virtual reality applications in
which the user is able to perform translational movements in the
scene.

Index Terms—spherical harmonics, higher-order Ambisonics,
sound field translation, 3DoF+, sparse recovery

I. INTRODUCTION

In virtual reality, sound field translation, i.e., the ability
to evaluate the sound field at different positions from the
original origin, is the technological key requirement to allow
users to move freely in a recorded acoustic scene. This is
where recordings from a single spherical microphone array
(SMA) [1], [2] and the related higher-order Ambisonics (HOA)
framework, i.e., the representation of sound fields using spher-
ical harmonics (SH) [3]–[5], find their limitations. The plane
wave translation straightly derived from theory [6], [7] fails
to estimate the sound field at displacements larger than a few
centimeters as SH truncation orders are low in practice due to
physical constraints of today’s recording technology.

In order to overcome these limitations, various strategies
have been proposed which often exploit the properties of
human spatial hearing. Besides fixed filter methods, e.g., [8],
[9], several approaches perform an active decomposition of
the signal to control an adaptive filter. The methods proposed
in [10], [11] are highly engineered systems with a complex
interaction between their individual components.

The authors of [10] employ methods from the mathematical
framework of compressed sensing. In the context of spatial
audio recordings, such methods have already been studied in
the past, for instance to reduce spatial aliasing artifacts [12],
to improve reproduction by increasing spatial resolution and
sweet spot size [13], for beamforming [14] or to apply
dereverberation [15].

Recently, Birnie et al. [16] proposed a method for spatially
translated binaural reproduction. They showed how sparse

recovery can be used to improve the performance of the plane
wave translation method. However, their joint consideration of
sound field translation and reproduction method does not allow
to use alternative reproduction approaches such as playback on
loudspeaker arrays. In the present paper, we propose a sparse-
recovery-based translation framework which provides a more
flexible HOA signal at its output. Moreover, we separate the
sparse recovery from the actual translation process. This allows
us to interchange the translation methods, e.g., by different
of the above-mentioned fixed-filter translation methods, and
to investigate the behavior of each functional stage individ-
ually. In the first stage, the order-limited input HOA signal
is upscaled to an increased SH truncation, a methodology
accredited to Wabnitz et al. [17], [18]. The upscaled signal
has an increased spatial resolution which can be exploited to
overcome shortcomings of the translation method in the second
stage. We demonstrate how the upscaling allows to operate the
plane wave translation beyond its original capabilities, i.e., a
range extender so to speak.

The paper is organized as follows: the SH fundamentals
and basic methods for sound field translation are recapped in
Sec. II. In Sec. III, we introduce the concept of upscaling,
present our novel framework and discuss key aspects. Sec. IV
provides simulation results which show the influence of differ-
ent parameters and reveal insights into the interaction of the
individual system components. Finally, we draw an overall
picture of the system’s potentials and limitations.

II. FUNDAMENTALS

A. Spherical Harmonics Description of the Sound Field

The complex-valued sound field pressure p̆(k, ~x) over Carte-
sian coordinates ~x ∈ R3 can be modeled by superposition of
plane wave sources ψ̆(PW)(k,~su) impinging into the coordinate
system’s origin from directions ~su as [19]

p̆(k, ~x) =
1

4π

∫
S2

ψ̆(PW)(k,~su)e−ik~su·~x d~su. (1)

Here, i is the imaginary unit. The wave number k = ω
c is

proportional to the angular frequency ω in case of a constant
speed of sound c. The notation ~( · )u denotes a normalization
of a vector to unit length. The surface element on the unit
sphere S2 is d~su ≡ sin θ dθ dφ with inclination angle θ and
azimuth angle φ.
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Equivalently, the sound field can also be described using a
distribution of point sources ψ(PS)(k, s0~su) at a fixed distance
s0 from the origin. The sound field is then given by [4], [19]

p̆(k, ~x) =
1

4π

∫
S2

ψ̆(PS)(k, s0~su)
ei‖s0~su−~x‖

‖s0~su − ~x‖
s0

eiks0
d~su. (2)

Note that (2) describes an interior problem and is only valid
for ‖~x‖ < s0.

Both the signals ψ̆(PW)(k,~su) and ψ̆(PS)(k, s0~su) can be
transformed to the SH domain in which we can express a
relation between them.

We assume that ψ̆(k,~s) is either ψ̆(PW)(k,~su) or
ψ̆(PS)(k, s0~su). ψ̆(k,~s) can then be expressed as a SH se-
ries, [19]

ψ̆(k,~s) =

∞∑
n=0

n∑
m=−n

ψnm(k, ‖~s‖)Y mn (~su) (3)

with SH basis functions Y mn (~su) ≡ Y mn (θ, φ) with order n =
0, 1, 2, . . . and degree m, −n ≤ m ≤ n. The inverse relation
is given by

ψnm(k, ‖~s‖) =

∫
S2

ψ̆(k,~s) [Y mn (~su)]
∗

d~su. (4)

Here, (·)∗ denotes the complex conjugate.
Equating (1) and (2) and performing the SH transform (4)

yields the relation [8], [20]

ψ(PW)
nm (k) =

s0
eiks0

ikhn(ks0)

(−i)n
ψ(PS)
nm (k, s0). (5)

hn(·) is the spherical Hankel function of the first kind.
ψ(PW)
nm (k) and ψ(PS)

nm (k, s0) are asymptotically identical, i.e., for
ks0 � n. In other words, the point sources become plane
waves for s0 →∞.

B. Spherical Harmonics Band Limitation

In practice, only a finite number of coefficients ψnm(k, ‖~s‖)
up to a certain truncation order n ≤ N are available, e.g.,
N = 4 [21]. In this case, (3) is approximated using

ψ(k,~s) =

N∑
n=0

n∑
m=−n

ψnm(k, ‖~s‖)Y mn (~su). (6)

The signal ψ(k,~s) can be considered a spatially low-passed
version of the true signal ψ̆(k,~s).

When evaluating (6) on a nearly-uniform discrete sampling
grid Q = {~su,q|q = 1, . . . , Q} with Q sampling points, (6) can
be rephrased in vector notation as

ψ = YN,Qψnm (7)

with ψ = [ψ(k,~s1), . . . , ψ(k,~sQ)]T and ψnm =
[ψ0,0(k, ‖~s‖), . . . , ψN,N (k, ‖~s‖)]T. We omit the dependency
on k for better readability. Note that when ψnm is ψ(PW)

nm ,
the coefficient vector is equivalent to a HOA signal in the
frequency domain. For the case of ψ(PS)

nm, the coefficients can
be considered a near-field-compensated HOA (NFC-HOA)
signal [20]. The SH matrix YN,Q has dimension Q×(N+1)2.

The coefficient vector ψnm can be reconstructed from ψ
if Q ≥ (N + 1)2 and YN,Q has full rank,

ψnm = Y †N,Qψ. (8)

Here, (·)† denotes the Moore-Penrose pseudoinverse.
Applying the band-limited signals ψ(PW)(k,~su) or

ψ(PS)(k, s0~su) in (1) or (2), respectively, results in a
sound field p(k, ~x) which is an adequate approximation of
p̆(k, ~x) in the region

k‖~x‖ < N (9)

as shown in [4]. This sweet spot size strongly depends on
frequency and truncation order. For N = 4, it corresponds to
a diameter of 87 cm at 500 Hz and only 8.7 cm at 5 kHz.

C. Sound Field Translation

Sound field translation methods aim to find a signal ψ̃nm

from a given signal ψnm which is an appropriate estimate of
the sound field around a shifted position ~d, i.e., p̃(k, ~x) ≈
p̆(k, ~x + ~d). In the following, we are going to recap two
state-of-the-art methods which both assume a linear relation
between ψ̃(PW)

nm and ψ(PW)
nm using a translation matrix TN ,

ψ̃(PW)
nm = TNψ

(PW)
nm . (10)

The plane wave translation method is straightforward to
derive by replacing ~x by ~x + ~d in (1) which results in a
phase rotation of ψ̆(PW)(k,~su). However, since ψ̆(PW)(k,~su)
is unavailable, the operation is performed on ψ(PW)(k,~su)
resulting in [6], [8], [22]

ψ̃(PW)(k,~su) = ψ(PW)(k,~su) e−ik~su·~d, (11)

which is practically limited to very small translations k‖~d‖ �
N (cf. (9)). This poses a major practical limitation.

As a consequence, other methods were developed to over-
come the limitation of (11). The space warping-based trans-
lation presented in [8] defines

ψ̃(PW)(k, θ̃, φ) = g(θ̃)ψ(PW)(k, f−1(θ̃), φ). (12)

f−1 is the inverse of the warping function θ̃ = f(θ). The
choice [8]

f(θ) = cos−1

(
cos(θ)− β√

1− 2β cos(θ) + β2

)
(13)

has the intent of mapping the original source directions to the
source directions seen from the translated position according
to a geometric model where all sources are assumed to be in
a constant distance from the origin s0. The warping factor
β = d/s0, |β| < 1 describes the displacement relative to
the sources. The effect of the operation is a squeezing of
angles for a movement away from the sources and angular
spreading for a movement towards a source. Note that for the
sake of simplified notation, (12) is limited to displacements in
the direction of the spherical coordinate system’s zenith, i.e.,
~d = d~ez , without loss of generality.

In [8], different strategies for the choice of the equalization
function g(θ̃) were proposed. We here stick to the amplitude-
adjusted variant. This particular variant neglects physically
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Fig. 1. Block diagram

correct phase adjustments in favor of an expected improvement
in psychoacoustic performance of the translation method even
for translations beyond k‖~d‖ > N .

III. PROPOSED FRAMEWORK

In Sec. II-C, we learned that a low truncation order N poses
a major limitation on the translation of the sound field. To
overcome this limitation, the idea of the method proposed in
this section is to perform an order upscaling of the given signal
to an increased order N ′ > N prior to the translation operation
as illustrated in Fig. 1. The upscaling is based on a sparse
source model, which will be introduced in the following.

A. Sparse Source Model

Instead of reconstructing the spatially low-pass filtered
signal ψ from ψnm using (7), we aim at reconstructing the
original signal ψ̆(k,~s) from (3) sampled on a dense grid Q,
denoted as ψ̆. That is solving the underdetermined problem

Y †N,Q ψ̆ = ψnm (14)

for ψ̆. We choose the number of sampling points Q sufficiently
high to later (in Sec. III-B) reconstruct the upscaled signal
with (N ′ + 1)2 coefficients, i.e., Q ≥ (N ′ + 1). In order to
improve the estimate for ψ̆ over the least-squares solution (7),
we introduce a source model with a sparse source distribution
χ consisting of I � (N + 1)2 sources χi impinging from
(θχi , φχi) and additive noise ν,

ψ̆ = χ+ ν

=

I∑
i=1

χieq|(θq,φq)=(θχi ,φχi )
+ ν.

(15)

Here, eq is the Q-dimensional standard basis vector which is
all zero except for the q-th entry. Further, we assume that χ
is dominant, i.e., E{χHχ} � E{νHν}, and that ν is diffuse,
i.e., E{ννH} = 1

Q E{νHν}I . Here, I denotes the identity
matrix.

Note that the source model (15) implies that all sources
are at a constant distance from the origin, which is infinity in
case of ψnm being ψ(PW)

nm , or s0 in case of ψ(PS)
nm. Although

this limitation can be overcome by using source distributions
on multiple shells at different radii as proposed in [16], the
simple model (15) facilitates the systematic evaluation in the
remainder of this paper.

B. Upscaling

Order upscaling [17], [18] of a truncated signal to an order
N ′ > N aims to recover a matrix Ω such that Ωψnm = ψ̆
and therefore solves (14). Instead of minimizing the square
norm, which yields a solution in which the energy is dis-
tributed evenly among the coefficients, we want to exploit

the sparsity assumption on our source model (15). Since the
noise ν violates the assumption of sparsity, L consecutive
observations are taken into account to reduce the impact on
the recovery of Ω. Problem (14) is then extended to

Y †N,Q Ψ̆ = Ψnm (16)

with Ψ̆ = [ψ̆(1), ψ̆(2), . . . , ψ̆(L)] and Ψnm =
[ψnm(1),ψnm(2), . . . ,ψnm(L)]. We use the regularized-
MFOCUSS algorithm, described in [23], to recover Ω by
solving the minimization problem

Ω̂ = argmin
Ω

(∥∥∥Y †N,QΩ Ψnm −Ψnm

∥∥∥2
F

+ λJ(Ω Ψnm)
) (17)

where ‖.‖F is the Frobenius norm, λ is a regularization factor,
and J(·) is the `12-norm. It first calculates the `2-norm over
the L observations, and then computes the `1-norm over the
sampling grid Q, i.e.,

J(Ψ̆) =

Q∑
q=1

(
L∑
l=1

∣∣∣ψ̆ql∣∣∣2)
1
2

. (18)

To cope with sources at any finite distance s0, we have
to perform the minimization (17) on the NFC-HOA signal
ψ(PS)

nm. However, we aim at constructing an upscaling matrix
UN→N ′ to be applied on ψ(PW)

nm . For this reason, we introduce
a diagonal matrix ZPS→PW which describes the transformation
between ψ(PW)

nm and ψ(PS)
nm according to (5). Accordingly, we

define ZPW→PS as its inverse.
Once the matrix Ω̂ is obtained, the upscaling matrix

UN→N ′ can be constructed on the basis of the product
Y †N ′,Q Ω̂ as

UN→N ′ = ZPS→PW Y
†
N ′,Q Ω̂ZPW→PS. (19)

The upscaled HOA coefficients can then be calculated as

Ψ′(PW)
nm = UN→N ′ Ψ(PW)

nm . (20)

As upscaling requires prior knowledge on s0, the impact of
inaccurate estimates of it will be investigated in Sec. IV-B.

C. Proposed Architecture
Instead of applying any sound field translation method on

ψ(PW)
nm as in (10), we start from its upscaled version ψ′(PW)

nm

obtained via (20). The effect of applying the translation oper-
ation TN ′ on ψ′nm is a decreased displacement relative to the
truncation order ks0

N ′ <
ks0
N . The result of TN ′ UN→N ′ ψ(PW)

nm ,
however, is a signal of order N ′ which again has to be
truncated to the desired output order N using a truncation
matrix

CN ′→N =
[
I 0

]︸ ︷︷ ︸
(N + 1)2 × (N ′ + 1)2

, (21)

i.e., the unity matrix I with (N + 1)2 diagonal elements is
padded using the zero-matrix 0. In total, we yield an overall
operation T ′N of dimension (N+1)2×(N+1)2 which retains
the signal order N at the output,

ψ̃(PW)
nm = CN ′→N TN ′ UN→N ′ ψ(PW)

nm

= T ′N ψ
(PW)
nm .

(22)

The overall procedure (22) is illustrated in Fig. 1.
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Fig. 2. Choice of the upscaling order N ′

D. Choice of Upscaling Order

Under the assumption that any sound field translation al-
gorithm is able to well reconstruct the sound field within the
signal’s sweet spot k‖~x‖ < N ′ analog to (9), N ′ has to be
chosen such that the target region of interest for the translated
sound field k‖~x− ~d‖ < N is fully covered1. This suggests to
choose the upscaled translation order N ′ as

N ′ > k‖~d‖+N. (23)

Its geometrical interpretation is shown in Fig. 2a. Eq. (23) will
be verified next.

IV. EXPERIMENTAL EVALUATION

In the following, we investigate the impact of the key
parameters N ′ and the source distance estimate s0. Moreover,
we conduct a comprehensive evaluation of the overall system
to draw a big picture of the system’s potentials and limitations.

A. Choice of Upscaling Order

In order to validate (23), an experiment was conducted in
which the order N ′ of a simulated oracle upscaled signal
ψ′

nm, i.e., the result of an ideal upscaling stage, was varied.
Plane wave translation (11) with three different displace-
ments k‖~d‖ ∈ {8, 18, 28} was applied to obtain ψ̃nm =
CN ′→NTN ′ψ′nm with N = 4. Fig. 2b shows the mean
squared error MSE = 1

L

∑
l‖ψ̃nm(l) − ψ̊nm(l)‖22 of L =

200 observations in a completely diffuse sound field. Here,
ψ̊nm(l) denotes the ground truth signal at the translated
position. The error decreases strongly with increasing N ′ and
is low for those N ′ which meet the condition (23), marked by
the dashed lines.

B. Impact of Source Distance Estimate

As it is of great practical relevance, we investigate the
impact of a model mismatch on the upscaling stage when
the assumed value of s0 does not match the actual source
distances. In this experiment, the upscaled signal Ψ′nm is
compared to the ground truth Ψ̆′nm, i.e., no translation is con-
sidered. Note that for translation methods which incorporate
a geometrical model such as the warping-based translation
method (12), the assumed value of s0 has a double impact,
which is not considered here.

1Remember that the area of interest k‖~x − ~d‖ < N is furthermore only
meaningful for ‖~x‖ < s0 due to the interior problem definition of (2).

20 30 40 50 60

−5

0

5

assumed ks0

M
SE

[d
B

]

ks0 = 25

ks0 = 35

ks0 = 45

Fig. 3. Impact of estimation accuracy of s0

Two point sources with varying source distances ks0 ∈
{25, 35, 45} and amplitudes s1 = 0.9 and s2 = 0.7e−i0.85π

from directions (θ, φ) = (40◦, 25◦) and (150◦,−45◦) were
simulated with additive diffuse noise at an SNR of 20 dB
yielding a signal ψnm with N = 4. For the upscaling stage,
L = 20 observations were taken into account. The algorithm
was parametrized with Q = 900 and λ = 10−4. The assumed
source distance passed to the upscaling stages was varied
independent of the actual s0. The MSE between Ψ′nm and
Ψ̆′nm was calculated over 100 repetitions of the experiment.

The results are shown in Fig. 3. The best performance
is achieved when the assumed source distance matches the
actual one. For inaccurate assumptions, ψ̆ becomes less sparse
resulting in a worse upscaling performance. Inaccuracies of the
assumed source distance have a large impact at close distances
and are less critical for greater distances. Moreover, the trans-
lation is more robust to overestimation than underestimation.

C. Overall System Evaluation

Aiming at a comprehensive evaluation of the overall system,
we repeatedly conducted a simulation with stochastic varia-
tions of the acoustical scene. The number of point sources
and their source distances were randomly picked from I ∈
{1, 2, 3, 4} and ks0 ∈ {25, 50, 100}, respectively, with random
amplitudes and phases. Additive diffuse noise was added to
the signal. In each experiment, plane wave and warping-based
translation both with and without upscaling was applied on
L = 20 observations of the plane-wave expansion ψnm

with N = 4. The translation displacement was k‖~d‖ = 9.6.
Each experiment was repeated 300 times at different diffuse
noise levels in order to capture the SNR dependency. The
upscaling hyper-parameters were chosen as Q = 900 and λ
was empirically adjusted to the SNR.

Since the MSE is not meaningful for those translation
methods which do not aim at a physically correct reconstruc-
tion of the sound field, we also employ the phase-neglecting,
psychoacoustically motivated spatial fidelity measure [8]

σ = 1− 2

π
cos−1

 ∫
S2 |ψ̃(PW)(~su)|2 · |ψ̊(PW)(~su)|2d~su√∫

S2 |ψ̃(PW)(~su)|4d~su

√∫
S2 |ψ̊(PW)(~su)|4d~su


which compares ψ̃(PW)(~su) to the ground truth ψ̊(PW)(~su). A
value of σ = 1 indicates high spatial fidelity.

Fig. 4 shows the mean, median and the 50 % confidence
interval over all observations of the 300 repetitions. As ex-
pected, the space-warping-based translation performs poorly
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Fig. 4. Results of overall evaluation: mean ( ), median ( ), and
25% to 75% percentile range ( ) of MSE and spatial similarity over all
observations of the 300 repetitions of the experiment.

in terms of MSE due to the fact that it neglects the phase.
At a sufficiently high SNR, the method yields high spatial
fidelity values σ which are only marginally increased when
upscaling is used, i.e., this translation method does not benefit
from an increased spatial resolution. In contrast, the upscaling
shows a significant effect on the plane wave translation both
in terms of the MSE and σ. While the vanilla plane wave
translation shows deficient performance, the upscaled variant
outperforms the space warping in σ and especially in terms
of the MSE as it accurately reconstructs the phase. The strong
dependency on SNR can be explained with the fact that the
sparsity assumptions on the signal are violated for low SNRs.

V. CONCLUSIONS

In this paper, we proposed a framework for enhanced sound
field translation using sparse recovery of a plane wave decom-
position. The underlying idea is to upscale a given HOA signal
to a higher truncation order in order to provide spatial infor-
mation of increased resolution to the downstream translation
mechanism. We introduced the mathematical fundamentals,
discussed the choice of upscaling order, and investigated the
impact of inaccuracies of the source distance estimate on the
upscaled signal. In an extensive simulation, we demonstrated
the effect of upscaling on different translation methods for
different SNRs. The performance of the plane wave translation
could be improved significantly.
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