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Abstract—We propose a method of creating acoustically bright
and dark zones using a circular loudspeaker array. Practical
reproduction must maximize acoustic contrast with a limited
range of loudspeaker weights to ensure the quality of reproduced
sounds. Therefore, we consider a constrained pressure-matching
method that uses Tikhonov regularization. Furthermore, we
impose additional sparse regularization to describe the ideal
reproduced sound field as a simple model with a sparse structure.
We obtain optimal loudspeaker weights by using an acoustic
maximization algorithm based on a proximal splitting method.
Numerical simulation results show that our method achieves a
higher acoustic contrast than existing pressure-matching-based
methods with a constraint of limited loudspeaker weights.

Index Terms—acoustic contrast maximization, loudspeaker
array, beamforming, sparse representation, convex optimization

I. INTRODUCTION

Acoustic contrast maximization is a method of reproducing
sound only in a target area (acoustically bright zone) while
attenuating it in other areas (acoustically dark zones) [1].
This method enables listeners to enjoy audio content through
audio interfaces without annoying other people nearby. Acous-
tic contrast maximization is implemented based on energy-
based methods and sound field control methods. Energy-based
methods maximize the ratio between the radiated power in a
bright zone and that in a dark zone [2]–[4]. Sound field control
methods reproduce a target sound pressure distribution defined
at a set of control points. We propose a sound field control
based method that can accurately reproduce the target sound
field in the bright zone.

Sound field control methods are roughly divided into either
pressure-matching based methods [5] or analytical methods
[6]–[8]. Pressure-matching-based methods minimize error dis-
tribution between target sound fields and reproduced sound
fields. These methods must solve linear inverse problems
with a spatial correlation matrix of Green’s functions of ill-
determined rank. To obtain stable solutions, such linear inverse
problems are replaced by nearby linear systems that are less
sensitive to perturbations in a process called ”regularization”
[9]. One of the most commonly used regularization methods is
Tikhonov regularization, which reduces the effect of instability
in the inverse matrix of a spatial correlation matrix [10]. Many
of the pressure-matching-based methods are based on this reg-
ularization [1]. Analytical methods can compute loudspeaker
weights as solutions of a Helmholtz equation by comparing
coefficients in a frequency [8] or a wavenumber domain [7].

Pressure-matching-based methods with regularization can
be viewed as constrained convex optimization problems that
minimize simple cost functions comprising multiple convex
functions. More flexible ”proximal splitting algorithms” [11],
[12] have been introduced as a solution to such problems.
Proximal splitting algorithms can deal with cost functions in
which differentiable smooth functions like l2 norm and some
non-smooth functions like l1 norm are mixed. These methods
are used in applications such as signal and image process-
ing, especially in sparse signal processing [13]. Similarly, in
acoustic signal processing, algorithms have proven effective
for sound field recording and reproduction [14], room impulse
estimation [15], and multizone sound field reproduction [16].

In this study, we propose a method based on a
constrained pressure-matching method. The conventional
pressure-matching method minimizes the squared l2 norm of
the error distribution between target sound fields and repro-
duced sound fields. However, only minimizing the squared
l2 norm of the error distribution causes sound to leak into the
dark zones. In addition to minimizing the l2 norm, our method
maximizes acoustic contrasts by using a sparsity of spatial en-
ergy distribution: Non-zero components reside only in a bright
zone. To evaluate the sparsity of the spatial energy distribution,
we use the mixed l1,2 norm, which is often used to evaluate
sparsity with a group structure. Furthermore, our method
limits the loudspeaker weights by Tikhonov regularization. We
formulate an algorithm based on the proximal splitting method
to solve the complicated optimization problem that minimizes
a cost function that consists of the sum of three convex
functions that includes the above non-smooth functions.

II. ACOUSTIC CONTRAST MAXIMIZATION

A. Green’s function for circular loudspeaker array

Assuming that the target field is the free field in a 2-
dimensional space, the sound field created by a point source
located at the position r′ is modeled on Green’s function [17].
Considering a plane wave impinging on a rigid cylinder and
its scattering on the surface, the Green’s function for the l-
th loudspeaker of a rigid circular array with radius a can be
derived as follows [18]:

GCLA2D (r|r′l, k) =
∞∑

µ=−∞
− Hµ(kr)

2πkaH ′µ(ka)
ejµ(φ−φ

′
l), (1)
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where r = (r, φ) is an arbitrary point in the polar coordinate
system. j =

√
−1 is the imaginary unit and k is the wave

number. Hµ is the µ-th order Hankel function of the second
kind, and H ′µ is its first order derivative. Hereinafter, the wave
number k is omitted for simplicity.

B. Problem formulation

Acoustic contrast maximization is composed of a loud-
speaker array and the microphones that constitute the bright
and dark zones. The method reproduces sound only in the
bright zone and suppresses it in the dark zone. The bright and
dark zones can be defined arbitrarily by changing the number
and position of the microphones. In this study, we consider
the acoustic contrast maximization of the exterior sound field.
The exterior sound field p(r) at a control point r reproduced
by a circular loudspeaker array is expressed as follows:

p(r) =

L∑
l=1

GCLA2D (r|r′l) · wl, (2)

where L is the number of loudspeakers. wl denotes l-th
loudspeaker weight. The sound fields at the control points
are defined as pB = [p1B , p

2
B , . . . , p

MB

B ]T for the bright zone
and pD = [p1D, p

2
D, . . . , p

MD

D ]T for the dark zone. MB is the
number of control points in the bright zone, and MD is the
number of control points in the dark zone. The superscript T

denotes transposition. The sound fields of the bright zone pB
are written as the following matrix-vector product:

pB = HBw, (3)

where w = [w1, w2, . . . , wL]
T is the vector of the loudspeaker

weights. HB is the matrix of the Green’s functions between
the loudspeaker array and the control points in the bright zone.
The sound fields of dark zone pD and the Green’s functions
between the loudspeaker array and the control points of dark
zone HD can be defined by equivalent notation.

C. Conventional methods

The pressure-matching method is based on the sound field
control method. The pressure-matching method minimizes the
squared sum of error distributions between the target sound
field and the reproduced sound field. The cost function of the
pressure-matching method with a weighted factor is as follows
[19]:

inf
w

(pdes −Hw)HA(pdes −Hw) + λWPM‖w‖2, (4)

where the superscript H denotes the Hermitian transpose.
H = (HT

B HT
D)

T is a Green’s function matrix between all the

control points and the loudspeakers. pdes =
(
pdes
B

T
pdes
D

T
)T

denote desired sound pressure distribution at all the control
points. pdes

B denotes the desired sound field in the bright zone,
and pdes

D denotes the desired sound field in the dark zones. ‖·‖
means the l2 norm. λWPM is the regularization parameter. A
is the diagonal matrix, where the diagonal elements store the
weight parameters that correspond to each control point. An

analytical solution to this problem can be derived by setting
the first order derivative of (4) with respect to w to zero as:

w =
(
HHAH+ λWPMI

)† (
HHApdes

)
, (5)

where I denotes the identity matrix. † is the (pseudo) inverse
of a matrix. If A is a unit matrix, (5) is the loudspeaker weight
vector of the pressure-matching method.

The acoustic contrast control method is based on an energy-
based method. The acoustic contrast control method maxi-
mizes the ratio of spatially averaged sound pressure levels
between the bright zone and the dark zone [4].

inf
w

pH
DpD+λACC,1(p

H
BpB−B)+λACC,2(w

Hw−E), (6)

where B is the desired sound pressure in the bright zone. E is
the maximum allowed power of loudspeaker weight. λACC,1

and λACC,2 are the Lagrange multipliers. By setting the first
derivative of (6) with respect to w to zero and rearranging the
equation, we obtain the following equation:

λACC,1w = −(HH
BHB)

†(HH
DHD + λACC,2I)w, (7)

(7) can be considered an eigenvalue problem. There-
fore, selecting the maximum eigenvalue of (HH

DHD +
λACCI)

†(HH
BHB) gives the loudspeaker weights of the

acoustic contrast control method. λACC is the regularization
parameter of the acoustic contrast control method.

Conventional methods can create bright and dark zones.
However, the pressure-matching method causes sound to leak
into the dark zone because it only minimizes the squared
sum of error distributions between the target sound field and
the reproduced sound field. Moreover, the acoustic contrast
control method cannot control the sound field in the bright
zone arbitrarily. Our method imposes an additional constraint
on the pressure-matching method to obtain a higher acoustic
contrast than conventional methods.

III. PROPOSED METHOD

Sparse regularization is used in various acoustic signal
processing applications. Sound field estimation in a near field
assumes that there are only a few sources in the estimated
sound field [20]. In addition, methods that use a loudspeaker
array also assume that only a few loudspeaker weights have
significant values [16]. Sparse regularization can describe the
estimated sound field and loudspeaker weights as a simple
model. Thus, we propose a novel acoustic contrast maxi-
mization method that uses sparse regularization. The acoustic
contrast maximization method creates acoustically bright and
dark zones. In an ideal reproduced sound field, non-zero
components reside only in bright zones while the power of
an ideal reproduced sound field in a dark-zone is zero. Based
on previous studies that used sparse regularization [13]–[16],
[20], we consider that sparse regularization could effectively
describe the reproduced sound field as a simple model. This
sparse distribution of reproduced sound field power can be
defined explicitly with the following mixed l1,2 norm [12]:

‖x‖1,2 :=
∑
g∈G

‖xg‖, (8)
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Algorithm 1 Proximal splitting method for (10)
Input: γ1, γ2. λ1, λ2, H
Initialize: w(0), q(0), i⇐ 0

while i < Tmax do
w(i+1) ⇐ proxγ1λ1g

(
w(i) − γ1

(
∇f(w(i)) +HHq(i)

))
q̃(i+1) ⇐ q(i) + γ2H(2w(i+1) −w(i))

q(i+1) ⇐ q̃(i+1) − γ2proxλ2
γ2
h

(
1
γ2
q̃(i+1)

)
i⇐ i+ 1

end while
Output: w⇐ w(i+1)

where xg denotes a vector comprising elements divided from
x without overlapping each other. G is an index set of x. The
mixed l1,2 norm is often used to evaluate sparsity with a group
structure [20]. By using the mixed l1,2 norm (8), the sparse
distribution of the reproduced sound field is defined by the
following function:

h(p) = ‖pB‖1,2 + ‖pD‖1,2
= ‖HBw‖1,2 + ‖HDw‖1,2
= ‖Hw‖1,2. (9)

In addition, loudspeaker weights must be limited so that the
loudspeakers can reproduce sounds in proper quality. Many
existing methods use the Tikhonov regularization that uses
the l2 norm as a constraint on the loudspeaker weights. We
propose a method based on the pressure-matching method that
includes the constraints on the sparse structure of the repro-
duced sound field by function (9) and Tikhonov regularization.
However, this method includes a non-smooth function in the
cost function, so it is difficult to obtain the loudspeaker weights
directly like with a conventional pressure-matching method.
Therefore, we propose an algorithm based on the proximal
splitting method. The method is an iterative optimization
method that can deal with a cost function that includes non-
smooth functions [11], [12]. The optimization problem is
defined as the sum of three convex functions as follows:

inf
w,u

f(w) + g(w) + h(u),

f(w) = (pdes −Hw)HA(pdes −Hw),

g(w) = λ1‖w‖2,
h(u) = λ2‖u‖1,2, s.t.u = Hw, (10)

where λ1 and λ2 are non-negative balancing parameters that
control the weight of each constraint. The optimization prob-
lem (10) is formulated into the following Lagrangian using
the dual variable q:

inf
w,u

sup
q

f(w) + g(w) + h(u) + 〈q,Hw − u〉, (11)

where 〈, 〉 denotes the inner product of the vectors. Although
there are methods of solving the primal problem directly,
solving the primal-dual problem is easier because it is an
unconstrained convex minimization problem. The primal-dual
problem of (11) becomes a convex minimization problem with
respect to w when q is fixed, and it becomes a concave
function minimization problem with respect to q when w

Fig. 1. Experimental setup of our personal sound field system. A cir-
cular loudspeaker array with radius a located at the center reproduces
sound only in the bright zone defined by φB and suppresses sound
in the dark zone.

is fixed [21]. Therefore, we can consider the optimization
problem separately for the primal variable w and the dual
variable q. Similarly, we can also separate them with respect
to the constraints g(w) and h(u). The primal-dual problem of
(11) can be expressed by the following equation:

inf
w

sup
q

f(w) + g(w)− h?(q) + 〈q,Hw〉, (12)

where h?(·) is the convex conjugate of h(·).
h?(q) = sup

u
(〈u,q〉 − h(u)) (13)

Finding the fixed point of (12) yields the solution to (12).
To solve the convex minimization problem with respect to the
primal variable w and the concave maximization problem with
respect to the dual variable q, we derive the subdifferential of
(12):

0 ∈ ∂ (f(w) + g(w)− h?(q) + 〈q,Hw〉) , (14)

where ∂ denotes the subdifferential operator, ∈ denotes the
output of (11) as multi-valued when functions g(w) and h?(q)
include non-smooth points. By using the proximal operator
prox [22], (11) can be written as

0 ∈ ∇f(w) + ∂g(w) +HHq,

w ∈ (Id + γ1∂g)(w) + γ1(∇f(w) +HHq),

w ∈ (Id + γ1∂g)
−1(w − γ1(∇f(w) +HHq)),

w = proxγ1λ1g(w − γ1(∇f(w) +HHq)), (15)

0 ∈ −∂h?(q) +Hw,

q ∈ (Id + γ2∂h
?)(q)− γ2Hw,

q ∈ (Id + γ2∂h
?)−1(q+ γ2Hw),

q = proxγ2λ2h?(q+ γ2Hw), (16)

where ∇ denotes the gradient for the differentiable function.
Id is the identity, and (·)−1 is the inverse operator. γ1 and γ2
are step sizes. Since proxγ2λ2h? contains a subdifferential of a
convex conjugate function and is complex, it can be obtained
by Moreau’s identity as follows [23]:

proxγ2λ2h?(q) = q− γ2proxλ2
γ2
h

(
1

γ2
q

)
. (17)
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Fig. 2. Acoustic contrasts of our method and conventional methods.
(a), (b), and (c) show the results when φB was set to 15◦, 30◦, and
45◦, respectively. The blue line, red line, yellow line, and purple line
show the respective results of our method, Prop, PM, WPM, and
ACC.

The proximity operators in proxγ1‖·‖2 and proxλ2
γ2
‖·‖1,2

can
be computed as follows:

proxλ1g(w) =
1

1 + λ1
w, (18)[

proxλ2
γ2
‖·‖1,2

(
1

γ2
q

)]
g

= max

{
1− λ2
‖qg‖

, 0

}
1

γ2
qg.

(19)
Considering Nesterov’s accelerated method [24] with respect
to w, the problem (10) can be solved by Algorithm 1.

IV. PERFORMANCE EVALUATION

A. Experimental setups

To investigate our method’s performance, we conducted a
numerical simulation of acoustic contrast maximization. We
compared our method with the pressure-matching method
(PM), the pressure-matching method with weighted factors
(WPM), and the acoustic contrast control method (ACC).

Figure 1 shows the experimental setup. In all the simu-
lations, a two-dimensional free field was assumed, and the
speed of sound was set to 343.36m/s. The rigid circular
loudspeaker array with radius a = 0.10m was located on the
x-y plane. The number of loudspeakers L was set to 32. The
control points were located on a circle with radius r = 1.0m
(the control points were set to 360 points arranged in the
φ direction at intervals of 1◦). The Green’s functions were
calculated using (1) in which µ was truncated to 100. The
area of φ = ±φB was defined as the bright zone, and the other
areas were defined as the dark zone. A Hanning window was
used as the desired sound field pdes so that the sound field
smoothly decayed from the bright zone to the dark zone [25].

pdes(φ) =

{
0.5× (1− cos φB+φ

φB
π) (|φ| ≤ φB),

0 (otherwise).
(20)
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Fig. 3. Array efforts of our method and conventional methods. (a),
(b), and (c) show the results when φB was set to 15◦, 30◦, and 45◦,
respectively. The blue line, red line, yellow line, and purple line show
the respective results of our method, Prop, PM, WPM, and ACC.

The regularization parameters were set to λPM =
σmax(H

HH) × 10−2, λWPM = σmax(H
HH), and λACC =

σmax(H
HH) × 10−2. σmax(H

HH) denotes the maximum
singular value of a (HHH). All the regularization parameters
were set experimentally. To further suppress the sound in
the dark zone, the weighting parameters of A of WPM
and our method were set to 1 in the bright zone and 100
in the dark zone. The balancing parameters λ1 and λ2 and
the step sizes γ1 and γ2 of our method were set to λ1 =
σmax(H

HH)×10−3, λ2 = 0.10, γ1 = 2/κ×0.75×10−2, and
γ2 = (1/γ1−κ/2)/σmax(H

HH)× 0.75× 10−2, respectively.
κ = σmax(H

HH) satisfies the Lipschitz constant requirement.
To evaluate the acoustic contrast maximization methods,

we defined the acoustic contrast and the array effort as
performance measures. Acoustic contrast is the ratio between
the mean square pressure in a bright zone and that in a dark
zone [3]. Acoustic contrast is defined as follows [4]:

AC = 10 log10
MD‖pB(rref , φb)‖2

MB‖pD(rref , φd)‖2
. (21)

The radial distance rref used in the evaluation is set to
r − 0.2 ≤ rref ≤ r + 0.2 and the widths of the bright zone
and the dark zone are φb ≤ |φB | and φd > |φB |. The array
effort is defined as the sum of the squared source strength
normalized by the source strength of a single monopole at the
center of a loudspeaker array that produces the same mean
square pressure at an arbitrary point r(point) in the bright zone
[4].

AE = 10 log10
wHw

|w0|2
, (22)

where w0 is the source strength of a single monopole at the
center of a loudspeaker array that produces the same mean
square pressure at the point r(point).

w0 =
H

(point)
B w

H0
, (23)
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where H
(point)
B is the vector of Green’s functions between the

loudspeaker array and the point r(point) in the bright zone. H0

is the Green’s function between the monopole located at the
center of the loudspeaker array and the point r(point). We set
point r(point) to the control point at the φ = 0◦.

B. Results

Fig.2 shows the acoustic contrast. In Figs.2, (a), (b), and (c)
show the results when φB was set to 15◦, 30◦, and 45◦, respec-
tively. The acoustic contrast was confirmed to increase as the
frequency went higher in almost all the methods independent
of the bright zone’s range. However, the acoustic contrast of
ACC at high frequencies reduced when the bright zone’s range
widened. Our method obtained higher acoustic contrast than
the conventional methods. Since PM and WPM are methods
based on pressure-matching, the acoustic contrast does not
appear to increase because the generated sound field is focused
on matching the desired sound field. Although our method
is also based on pressure-matching, the acoustic contrast is
seemingly high because the sparseness of the reproduced
sound field is evaluated by the mixed l1,2 norm. By modeling
the reproduced sound field using sparse regularization, the
acoustic contrast of our method is higher than the ACC, which
aims to maximize the acoustic contrast.

Fig.3 shows the array efforts of our method and conven-
tional methods. In Figs.3, (a), (b), and (c) show the results
when φB was set to 15◦, 30◦, and 45◦, respectively. The
acoustic contrast of our method is slightly higher than that
of the conventional methods. However, the array efforts of
all the methods are low enough that the loudspeakers can
reproduce proper quality. Since the array effort is lower than
0 dB, our method can reproduce the sound more efficiently
than a monopole.

V. CONCLUSION

We proposed a method of creating acoustically bright and
dark zones by using a rigid circular loudspeaker array. Our
method described the reproduced sound field using sparse
regularization as a simple model. We formulated an algorithm
based on a proximal splitting method to solve the complicated
optimization problem with a cost function that consists of
smooth and non-smooth functions. The results of numerical
experiments indicated that the acoustic contrast of our method
is higher than that of conventional methods. In addition, our
method can reproduce processed sounds of proper quality by
Tikhonov regularization.

Experimentally determined hyperparameters such as step
size greatly affected our results. In future work, we will
consider selecting step sizes and balancing the parameters
of a proximal splitting method for optimal performance. In
addition, we will conduct a detailed experiment using an actual
machine in an anechoic chamber.
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