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Abstract—Reducing undesired sounds in a multichannel
recording while preserving the spatial characteristics of the
acoustic scene is a challenging task. In recent works by the
present authors, different Ambisonics-to-Ambisonics noise reduc-
tion methods were discussed. To mitigate spatial distortions of
the noise, a direction-preserving approach and a partial-noise-
reduction approach were investigated. In this work, a signal-
dependent partial-noise-reduction approach is proposed, which
is able to mitigate spatial distortions of the noise further without
significantly deteriorating other performance measures and can
be applied to any multichannel signal format. The proposed
method is evaluated using spherical-microphone-array recordings
from the ACE corpus.

Index Terms—Noise reduction, spatial distortions, Ambisonics

I. INTRODUCTION

Multichannel acoustic signal enhancement is of paramount
importance for, e.g., audio communication, hearing-aids or
smart devices. Most existing techniques such as beamform-
ing [1], [2] or signal separation [3], [4] aim at estimating
the spectro-temporal characteristics of the desired sound com-
ponent but not its spatial characteristics. For spatial sound
acquisition, however, the spatial characteristics of the sound
need to be preserved after signal enhancement. It has been
shown, in the context of hearing aids, that it is crucial to not
only preserve the spatial characteristics of the desired sound
component but also of the undesired component, as the loss
of spatial separation between these two sound components can
deteriorate the intelligibility [5].

For general multichannel-to-multichannel noise reduction,
different methods can be used which preserve the spatial
characteristics of the desired component. The multidimen-
sional Wiener filter (MWF) can be used for speech en-
hancement [6] or signal separation [7]. In the context of
binaural beamforming, several methods have been proposed
to preserve the spatial cues of the desired and undesired
sound components [8], [9]. In [8], a partial noise reduction
method was proposed which mixes the noise-reduced signal
with the unprocessed signal. In previous works of the present
authors [10], [11], Ambisonics-to-Ambisonics noise reduction
was investigated. A direction-preserving approach was pro-
posed and compared to the MWF with and without partial
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noise reduction. It was found, that the direction-preserving
approach is better at preserving the spatial characteristics of
the noise and computationally more efficient but can yield
higher distortions of the desired sound compared to the MWF-
based methods. Moreover, the direction-preserving approach
was specifically formulated for Ambisonic signals. Therefore,
it remains to develop an effective direction-preserving noise
reduction method which does not increase the desired-signal
distortion and works for arbitrary multichannel recordings.

In this work, we propose a new multichannel-to-
multichannel noise reduction method which is derived by
adding a measure for the spatial distortion of the noise to
the MWF cost function. The result can be expressed as
a MWF with signal-dependent mixing between the noise-
reduced and unprocessed signals. We evaluate the proposed
method using measured spherical-microphone-array impulse
responses and noise signals from the ACE corpus [12] and
show that the proposed method can be better at preserving
the spatial distribution of the noise compared to the other
methods without significantly deteriorating other performance
measures.

II. SIGNAL MODEL

A. General Signal Model

Let x denote a multichannel audio signal vector consisting
of C channels. We assume that the signals are given in the
short-time Fourier transform (STFT) domain, where the time-
frame and frequency-bin indices are denoted by n and k,
respectively. Moreover, we assume that x contains a desired
component s and an undesired noise component v, i.e.,

x(k, n) = s(k, n) + v(k, n) . (1)

Assuming that the desired component and the noise are mu-
tually uncorrelated, the power spectral density (PSD) matrix

Φx(k, n) = E
{
x(k, n) xH(k, n)

}
, (2)

where E{·} denotes the statistical expectation and (·)H the
Hermitian transpose, can be modeled as follows:

Φx(k, n) = Φs(k, n) + Φv(k, n) , (3)

where Φs and Φv denote the desired-signal and noise PSD
matrices, respectively.
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In this work, we consider a point source within a reverberant
room for the desired component. In this case, Φs can be
decomposed into a direct-plus-early-reverberant part and a
late-reverberant part as follows [13]:

Φs(k, n) = φS(k, n) e(k) eH(k) + φR(k, n) Γdif(k) , (4)

where φS , φR, e and Γdif denote the direct-plus-early-
reverberant PSD, the late-reverberant PSD, the relative-early
transfer function (RETF) vector [13] and the diffuse spatial
coherence matrix, respectively. For the noise, we assume a
time-invariant spatial coherence matrix Γv. Hence, Φv is
modeled as:

Φv(k, n) = φV (k, n) Γv(k) (5)

with φV denoting the PSD of the noise.

B. Ambisonic Signal Model

Ambisonics [14], [15] is a full-sphere surround-sound for-
mat which represents the sound field via its spherical har-
monic coefficients. Therefore, the C signals do not represent
loudspeaker or microphone signals but different directional
components of the sound field. Ambisonic signals can be
obtained using spherical microphone arrays such as, e.g., the
Eigenmike [16]. In this work, we consider Ambisonics as an
exemplary mutichannel audio format to evaluate the proposed
noise reduction method.

In Ambisonics, the signal channels are denoted by two
indices l = 0, ..., L and m = −l, ...l, denoted as order and
degree, respectively. The maximum order L constitutes the
Ambisonics order and the number of channels is C = (L+1)2.
The general signal model introduced in Sec. II-A can be used,
where the diffuse spatial coherence matrix Γdif becomes an
identity matrix in the Ambisonics domain [17].

III. NOISE REDUCTION USING A SPATIAL FILTER MATRIX

We aim to reduce the undesired noise component of the
noisy signal vector x, while preserving the desired component
s. This can be achieved by applying a filter matrix W to
x [10]:

z(k, n) = W(k, n) x(k, n) , (6)

where z is the C-dimensional multichannel signal vector with
reduced noise. The STFT indices n and k are omitted for
brevity in the remainder of this section.

A. Parametric Multidimensional Wiener Filter

The parametric multidimensional Wiener filter (PMWF) is
the extension of the parametric multichannel Wiener filter [18]
with multichannel output and can be derived, analogously to
the MWF [6], by minimizing the cost function [11]

Jµ(W) = E
{
‖Ws− s‖22

}
+ µ E

{
‖Wv‖22

}
(7)

w.r.t. W, where ‖ ·‖2 denotes the `2-norm and µ the trade-off
parameter between speech distortion and noise reduction. The
optimal solution Wµ for is given by [6]

Wµ = Φs (Φs + µΦv)
−1 (8)

The ordinary MWF is obtained for µ = 1. The PMWF
preserves the spatial characteristics of the desired component
well but distorts the spatial characteristics of the noise [11].

B. Partial Noise Reduction

To mitigate the spatial distortion of the noise, it has been
proposed in [8] to only partially reduce the noise in the context
of binaural beamforming. This idea can be formulated for
general multichannel-to-multichannel noise reduction via the
cost function [19]

Ja,µ(W) = E
{
‖Ws− s‖22

}
+ µ E

{
‖Wv − av‖22

}
, (9)

where a ∈ [0, 1] denotes the mixing factor in this work. The
optimal solution Wa,µ can be expressed as follows:

Wa,µ = (1− a)Wµ + a I , (10)

where I denotes the C × C-dimensional identity matrix.
The partial noise reduction reduces the amount of spatial
distortions of the noise at the cost of less noise reduction [19].
For a = 0, the PMWF Wµ is obtained and, for a = 1, the filter
matrix becomes an identity matrix, which yields no spatial
distortions and no noise reduction.

C. Direction-Preserving Noise Reduction

The direction-preserving PMWF [10] is an Ambisonics-to-
Ambisonics noise reduction method which utilizes a special
form of the filter matrix W that preserves the directional
information of any sound field in an optimal way.

The direction-preserving filter matrix can be expressed as
follows [10]:

WDP =
∑Q

q=1
αq qqy

∗(Ωq)y
T (Ωq) , (11)

where Ω1, ...,ΩQ denote Q virtual spatial-sampling direc-
tions, q1, ..., qQ the corresponding sampling weights, y(Ω)
the vector of spherical harmonic functions up to order L and
α1, ..., αQ are Q directional gain parameters. The symbols
(·)∗ and (·)T denote the complex conjugate and transpose,
respectively. The choice of the virtual sampling directions is
discussed in more detail in [11].

Inserting WDP into the PMWF cost function (7), one can
derive an expression for the directional gains αq . The exact so-
lution, however, requires a Q×Q matrix inversion as discussed
in [11]. Therefore, an approximation was proposed in [10],
[11], viz. yT (Ωq)y

∗(Ωq′) ≈ 0 for q 6= q′, resulting in the
following simplified expression for the directional gains [10]:

αq = max

{
yT (Ωq) Φs y∗(Ωq)

yT (Ωq) (Φs + µΦv) y∗(Ωq)
, αmin

}
, (12)

where a lower bound αmin ∈ [0, 1) for the gains αq has
been introduced to reduce audible distortions. The direction-
preserving PMWF yields less spatial distortion of the noise
compared to the PMWF with partial noise reduction (10), at
the cost of higher desired-signal distortion [11]. Moreover,
it can be computationally more efficient compared to the
PMWF (8) which requires a C × C matrix inversion.
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Fig. 1. Block diagram of proposed noise reduction method.

IV. PROPOSED NOISE REDUCTION METHOD

In our previous works, we used the direction-preserving
form of the filter matrix (11) to mitigate spatial distortions of
the noise. In this work, we do not constrain the filter matrix,
but add a measure for the spatial distortion of the noise to the
cost function (9). For this purpose, we compute how much the
residual noise Wv differs from a scaled version of the noise
given by bv. In contrast to the mixing parameter a, the scalar
b is not a free parameter but chosen such that the expected
distance between Wv and bv is minimal. This results in the
following measure for the spatial distortion of the noise:

JND(W) = min
b
E
{
‖Wv − bv‖22

}
= E

{∥∥∥∥Wv − tr{WΦv}
tr{Φv}

v

∥∥∥∥2
2

}
, (13)

where tr{·} denotes the trace operator. The compound cost
function becomes:

Ja,µ ν(W) = Ja,µ(W) + ν JND(W) , (14)

where, in addition to a, ν is a trade-off parameter between
noise reduction and spatial distortion of the noise.

Computing the gradient of (14) w.r.t. WH , yields the
following set of equations:

W [Φs + (µ+ ν)Φv]− ν tr{WΦv}
tr{Φv}

Φv = Φs + aµΦv .

(15)
This linear system of equations can be solved using the ansatz:

W = (1− a′) Wµ+ν + a′I , (16)

where Wµ+ν is defined analogously to (8) and a′ is a scalar.
Inserting (16) into (15) and solving for a′ yields:

a′ = a+ (1− a)
ν tr{Wµ+νΦv}

µ tr{Φv}+ ν tr{Wµ+νΦv}
. (17)

Hence, the proposed noise reduction method can be interpreted
as a PMWF with signal-dependent mixing factor a′, where
a is the lower bound of a′. For ν = 0, the PMWF with
signal-dependent mixing reduces to the PMWF Wa,µ with
fixed mixing factor a. For µ = 0, the mixing factor becomes
a′ = 1 for all ν and, therefore, the filter matrix becomes
an identity matrix. The processing scheme of the proposed
method is shown in Fig. 1.

V. PARAMETER ESTIMATION

The discussed noise reduction methods require estimates of
the desired and noise PSD matrices Φs and Φv. Using the
signal model for the desired component (4) and the noise (5),

we have to estimate the early- and late-reverberant PSDs φS
and φR, the noise PSD φV , the RETF vector e and the spatial
coherence matrix of the noise Γv.

We estimate these parameters using the method in [11],
which can be summarized as follows:
• Prior information: Assume knowledge of Γv and the

reverbereration time T60. In this work, we computed Γv

by averaging vvH over all time frames and normalizing
w.r.t. the first element. In practice, Γv can be estimated
when the desired sound is inactive. The reverberation time
is needed for the PSD estimation.

• Offline estimation of e using the covariance-whitening
method [20] and the direct-to-reverberant ratio κ as
described in [11], where κ is required for the subsequent
PSD estimation.

• Recursive estimation of the noisy PSD matrix via:

Φ̂x(k, n) = β Φ̂x(k, n− 1) + (1− β) x(k, n) xH(k, n) ,

where β ∈ [0, 1) is a recursive smoothing parameter.
• Recursive estimation of φR using T60, κ̂ and the late-

reverberant PSD model from [21].
• Estimation of φS and φV using Φ̂x, φ̂R, ê and the

Frobenius-norm PSD estimator [22].
Estimated quantities have been denoted with the hat symbol
·̂. See [11], for more details on the parameter estimation.

VI. EVALUATION1

A. Performance Measures
To evaluate the performance of the discussed noise reduc-

tion methods, we computed the following noise reduction
(NR) and signal-to-distortion ratio (SDR) measures per time-
segment t and Mel-scale [23] frequency band b:

SDR(t, b) = 10 log10

( ∑
n∈Nt,k∈Kb

‖s(k, n)‖22∑
n∈Nt,k∈Kb

‖[Ws− s](k, n)‖22

)

NR(t, b) = 10 log10

( ∑
n∈Nt,k∈Kb

‖v(k, n)‖22∑
n∈Nt,k∈Kb

‖[Wv](k, n)‖22

)
,

(18)

where the time-segments and frequency bands are defined via

Nt = {(t− 1)T + 1, (t− 1)T + 2, ..., tT} with T = 6

Kb = {kb−1 + 1, kb−1 + 1, ..., kb} with

kb =

⌊
700

((
1 +

fs/2

700

)b/B
− 1

)
NDFT

fs

⌉
(19)

with B = 13 denoting the number of Mel-scale bands,
fs the sampling frequency and NDFT the discrete Fourier
transform (DFT) size of the STFT. The choice of the time-
segment length and frequency bands was motivated by com-
monly used objective quality measures such as the frequency-
weighted segmental signal-to-noise ratio [24]. The Mel-scale
is a perceptually-motivated frequency scale based on equally-
perceived pitch differences [23].

1Audio examples are provided at https://www.audiolabs-erlangen.de/
resources/2021-EUSIPCO-Partial-Noise-Reduction
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Fig. 2. Performance measures for different mixing factors a and noise reduction methods averaged over all configurations.

To evaluate spatial distortions, we used the following simi-
larity measure [11]:

σp,q(t, b) =
2

π
sin−1

 tr
{
Φ̄p(t, b)Φ̄q(t, b)

}√
tr
{

Φ̄
2
p(t, b)

}
tr
{

Φ̄
2
q(t, b)

}

(20)

with (p,q) = (v,Wv) (similarity noise) or (p,q) = (s,Ws)
(similarity speech) and

Φ̄p(t, b) =
∑

n∈Nt,k∈Kb

p(k, n)pH(k, n) . (21)

Note, that σp,q measures the angular similarity between the
two segmental PSD matrices Φ̄p and Φ̄q. A similarity of
σp,q = 1 indicates that the spatial distributions of the signal
vectors p and q are the same, whereas σp,q = 0 indicates
very different spatial distributions.

For the evaluation, the NR and SDR measures were limited
to the range [−10, 35] dB as suggested in [24] and, subse-
quently, all measures were averaged over the segments and
frequency bands.

B. Evaluation Setup

Three different noisy and reverberant Ambisonic signals
with L = 3 were generated for the evaluation. Different En-
glish speech files with fs = 16 kHz and a length of 5 seconds
were used for the source signals. For the reverberation and
noise, Eigenmike [16] recordings from the ACE corpus [12]
were used. For each of the three Ambisonic signals, a speech
file, a room and a noise type were selected. The speech file
was upsampled to 48 kHz (the sampling rate of the Eigenmike
recordings) and convolved with the Eigenmike room-impulse
responses of the selected room. Next, the Eigenmike noise

signal corresponding to the selected room and noise type was
scaled according to the desired signal to noise ratio (SNR).
The Ambisonic signals for the desired speech component and
the noise were obtained using the EigenUnits software [25].

For the processing, the signal components were downsam-
pled to 16 kHz and transformed to the STFT domain using
a square-root Hann window of 512 samples (32 ms) length,
50% overlap and a DFT size of 1024. The mixture signals
were obtained by adding the speech and noise signals with an
SNR of 0 dB.

The following configurations were used:

1) Female speech in ”Office 2” with T60 = 0.39 s and
babble noise (◦).

2) Female speech in ”Lecture Room 1” with T60 = 0.64 s
and fan noise (M).

3) Male speech in ”Lecture Room 2” with T60 = 1.25 s
and ambient noise (�).

For the noise reduction, we chose β = 0.5 and µ = 1. For
the direction-preserving method, a lower-bound αmin equal to
the mixing factor a and Q = 49 almost uniformly distributed
virtual sampling directions were chosen as in [11]. The matrix
inversion of the matrix PMWF in (8) was regularized by
adding 10−9 I to the matrix before inversion.

C. Results

In Fig. 2, the performance measures of the direction-
preserving PMWF (DP), the PMWF with partial noise re-
duction (MW) and the proposed noise reduction method
(Proposed) are shown for different mixing factors a and noise-
distortion trade-off parameters ν. Mean results are represented
by bars and individual results for the configurations 1 – 3 with
the symbols ◦, M and �, respectively.
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For all methods, the NR decreased with increasing a while
the other performance measures increased with a. In contrast,
increasing the trade-off parameter ν for the proposed method,
did not significantly influence the NR and SDR results while
increasing the similarity measures. For a = 0, the DP method
yielded the lowest NR but the best SDR, which reflects the
noise-reduction vs. speech distortion trade-off of the PMWF.
For a = 0.1, all methods resulted in very similar NR and
SDR measures while, for a = 0.2 the DP method yielded
slightly lower SDRs. The best NR results were obtained
for configuration 1 (◦) which has the lowest T60 making
the desired reverberant sound less diffuse and thus easier to
separate from the noise. On the contrary, configuration 3 (�)
with the largest T60 yielded the lowest NR results. Note, that
the NR and SDR performances are limited by the assumed
reverberant signal model which is not exactly fulfilled for the
investigated Ambisonic signals.

The differences in noise similarity for the different methods
are most prominent. As discussed in [11], the DP method
is better at preserving the spatial distribution of the noise
compared to the MW method. The noise similarity of the
proposed method increased with increasing ν while the NR
performance decreased only slightly and the SDR increased
slightly. The proposed method can achieve higher noise sim-
ilarities than the DP method when ν is large enough without
significantly deteriorating the other performance measures.
The speech similarity measures were high for all methods,
slightly increased for the proposed method with increasing ν
and became comparable to the speech similarity measures of
the DP method for ν ∈ {4, 8}.

VII. CONCLUSION

We proposed a new method to mitigate spatial distortions
of the noise for the PMWF. The method can be expressed
as a PMWF with partial noise reduction and signal-dependent
mixing factor. In the evaluation, we found that the proposed
noise reduction method can achieve higher noise similarities
than all other methods without significantly deteriorating the
other performance measures. It should be noted that the
DP method does not require a matrix inversion, while the
proposed method does due to the PMWF matrix. Therefore,
the authors recommend to use the proposed method whenever
the computational complexity is feasible and the DP method
when the computational complexity needs to be reduced.
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