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Abstract—In this paper, the pressure matching (PM) method to
sound zoning is considered in an ad-hoc wireless acoustic sensor
and actuator network (WASAN) consisting of multiple audio-
devices with loudspeakers and microphones. The goal of sound
zoning is to simultaneously create different zones with different
dominant sounds. To obtain this, a network-wide objective
involving the acoustic coupling between all the loudspeakers
and microphones is presented where the optimal solution is
obtained by solving a quadratically constraint quadratic Program
(QCQP). To allow for distributed processing, a Gauss-Seidel type
algorithm is proposed. It requires only that all the nodes have
access to the different microphone signals, but other than this
there is no need for communication between different nodes or
with a fusion center (FC). The algorithm is referred to as the
distributed adaptive PM algorithm (DA-PM). The algorithm is
proven to converge to the optimal solution, as also illustrated by
Monte Carlo simulations and evaluated in a simulated acoustic
environment.

Index Terms—Pressure Matching, Sound Zoning, Wireless Sen-
sor and Actuator Network (WASAN), Quadratically Constraint
Quadratic Program (QCQP)

I. INTRODUCTION

An ad-hoc wireless acoustic sensor and actuator network
(WASAN) consists of multiple audio-devices, equipped with
microphones and loudspeakers, where wireless links make
it possible for the devices to communicate and cooperate
to perform a certain audio processing task. Ad-hoc mean
that the relative positions of the different audio-devices, also
referred to as nodes, are undefined, unknown and can change
during the operation. When the nodes are able to manipulate
their loudspeaker signals, new applications like active noise
cancellation [1], [2] and sound zone control [3]–[5] emerge.
This paper focuses on sound zoning in an ad-hoc WASAN.

The goal of sound zoning is to simultaneously create differ-
ent zones with different dominant sounds. This is controlled
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by measuring the pressure in these zones by means of so-
called error microphones. In a WASAN, each zone can decide
independently which sound signals belong to its required
sound signals and which sound signals are interfering sound
signals that should be suppressed. To create the desired sound
zones, FIR filters are designed to pre-filter all the loudspeaker
signals in the WASAN. Design criteria for these filters involve
the signal distortion for the required sound signals and the
resulting interfering sound power. In the acoustic contrast
control (ACC) method [6], the ratio between the power of
the residual interfering sound signals and the power of the
required sound signals is minimized. In the pressure matching
(PM) method [7], the signal distortion of the required sound
signals is explicitly taken into account. Hybrid methods [4],
[8] combining the ACC and PM criteria are also available.

This paper focuses on the PM method where the FIR
filters are designed by minimizing an objective involving
the acoustic coupling between all the loudspeakers and error
microphones in the WASAN, without exceeding the maximum
power of each loudspeaker. The optimal solution can be
found by solving a quadratically constraint quadratic program
(QCQP). Solving the QCQP requires gathering all acoustic
information in a fusion center (FC), which however might
become intractable as the number of nodes grows large. To
allow for distributed processing, a Gauss-Seidel type algorithm
is proposed. It requires only that all the nodes have access to
the different microphone signals, but other than this there is
no need for communication between different nodes or with
a FC. The algorithm is referred to as the distributed adaptive
PM algorithm (DA-PM). The algorithm is proven to converge
to the optimal solution, as also illustrated by Monte Carlo
simulations and evaluated in a simulated acoustic environment.

The paper is organized as follows. The problem formulation
and the centralized PM method are presented in Section II
and III respectively. In Section IV, the distributed algorithm
is presented. Computer simulations to illustrate the conver-
gence of the presented algorithm, are provided in Section V.
Conclusions are given in Section VI.

II. SIGNAL MODEL AND PROBLEM FORMULATION

A WASAN is considered where P localized error micro-
phones are recording the sound pressure in P different sound
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zones. K nodes, equipped with L loudspeakers each, are also
scattered over the considered region in an ad-hoc fashion.
The nodes are assumed to have access to the different error
microphone signals (e.g., the error microphones can broadcast
their signals using wireless links), but other communications
between the nodes will not be needed. Each node has also
access to S different sound signals xs(t), with t the time index.
Each sound signal belongs either to the required sound signals
Rp or the interfering sound signals Ip of sound zone p.

The goal of the PM method is to produce a desired sound
pressure dp(t) in sound zone p, defined as the sound pressure
produces by a virtual source playing all required sound signals
xs(t) in Rp, i.e.

dp(t) =

N−1∑
n=0

hpv(n)
∑
s∈Rp

xs(t−n) =
∑
s∈Rp

N−1∑
n=0

hpv(n)xs(t− n)︸ ︷︷ ︸
dp
s(t)

.

(1)
Here hp

v = [hpv(0) ... h
p
v(N−1)]T models the impulse response

between the virtual source and error microphone p as an N -th
order FIR filter and (.)T is the transpose operator.

To produce the desired pressures, loudspeaker l of node k in
the WASAN will play a signal ykl obtained as a convolution
of the known S sound signals and S unknown M -th order PM
filters {wkl,s}s=1...S , i.e.

ykl(t) =

S∑
s=1

M−1∑
m=0

wkl,s(m)xs(t−m) =

S∑
s=1

wT
kl,sxs(t) (2)

with wkl,s = [wkl,s(0) ... wkl,s(M − 1)]T and xs =
[xs(t) ... xs(t−M+1)]T . The sound pressure ep(t) received at
error microphone p is then given by the sum of all loudspeaker
signals convolved with the impulse responses between the
loudspeakers and the error microphones, i.e.

ep(t) =

K∑
k=1

L∑
l=1

N−1∑
n=0

hpkl(n)ykl(t− n) + np(t)

=

S∑
s=1

K∑
k=1

L∑
l=1

wT
kl,sH

p
klx̃s(t) + np(t)

=

S∑
s=1

K∑
k=1

wT
k,sH

p
kx̃s(t) + np(t)

=

S∑
s=1

wT
s H

px̃s(t)︸ ︷︷ ︸
eps(t)

+np(t).

(3)

where hp
kl is the N -th order impulse response between loud-

speaker l of node k and error microphone p and where np(t)
denotes additive noise1 uncorrelated with the sounds and Hp

kl

1The noise is the result of background noise, quantization and thermal noise
of the error microphone and can also consist of training sequences transmitted
by loudspeakers to estimate the impulse response.

is a Toeplitz matrix defined as

Hp
kl =


hp,T
kl 0 . . . 0

0 hp,T
kl . . . 0

...
...

. . . . . . . . .
...

0 0 . . . hp,T
kl

 ∈ RM×(M+N−1).

(4)
The other quantities used in (3) are defined as

• Hp
k = [Hp,T

k1 ... Hp,T
kL ]T , Hp = [Hp,T

1 ... Hp,T
K ]T

• wk,s = [wT
k1,s ... w

T
kL,s]

T , ws = [wT
1,s ... w

T
K,s]

T

• x̃s(t) = [xs(t) ... xs(t−M −N + 2)]T .

In equation (2) and (3), the PM filters are considered to be
time-invariant [9]. Note that this assumption is approximately
satisfied if the coefficients of the PM filters change slowly
compared to the time scale of the system to be controlled, i.e.
the impulse responses hp

kl.
It is also assumed that the sound signals are uncorrelated.

Consequently dps(t) can only be obtained from eps(t). The
optimal PM filters Ŵ = [ŵ1 ... ŵS ] can be found from the
following optimization problem:

min
W

P∑
p=1

∑
s∈Rp

E{||dps(t)− eps(t)||2}+ µ
∑
s∈Ip

E{||eps(t)||2}


s.t.

S∑
s=1

wT
kl,sE{xs(t)xs(t)

T }︸ ︷︷ ︸
Rxsxs

wkl,s ≤ Pkl ∀k, l. (5)

Here E{.} denotes the expected value operator and is imple-
mented by (recursive) time-averaging over a time window. The
power of each loudspeaker signal ykl(t) is also constrained by
a maximal power Pkl, i.e. E{y2kl(t)} ≤ Pkl. The parameter µ
is included as a trade-off between the reproduction error for
the required sound signals and the residual interfering sound
power [4].

III. CENTRALIZED ALGORITHM

The objective function of (5) , denoted by J(W), can, after
some matrix manipulations, be written as

J(W) =

S∑
s=1

(
wT

s Rsws − 2wT
s rs + E{|dps(t)|2}

)
(6)

where

Rs =
∑
p∈Bs

HpRx̃sx̃s
Hp,T + µ

∑
p∈Ds

HpRx̃sx̃s
Hp,T (7)

rs =
∑
p∈Bs

HpE{x̃s(t)d
p
s(t)} (8)

Rx̃sx̃s =E{x̃s(t)x̃s(t)
T } (9)

with Bs and Ds denoting the collection of error microphones
with s ∈ Rp and s ∈ Ip respectively. These sets are often
referred to as the bright and dark zone for sound s.
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Note that (5) is a convex QCQP and has a unique optimal
solution Ŵ since Rs and Rxsxs are positive definite2 for all
sources. This solution can be found using well know methods,
e.g. interior-point methods [10]. The optimal solution will
fulfill the KKT conditions

∀s :

(
Rs +

K∑
k=1

L∑
l=1

λ̂klEklRxsxs
ET

kl

)
ŵs = rs

∀k, l :
S∑

s=1

ŵT
kl,sRxsxs

ŵkl,s ≤ Pkl (10)

∀k, l :λ̂kl

(
S∑

s=1

ŵT
kl,sRxsxs

ŵkl,s − Pkl

)
= 0.

The matrix Ekl = [0 IM 0]T ∈ RMKL×M is an all zero
matrix where the identity matrix is placed on the positions
corresponding to indexes k and l.

However, to compute these optimal PM filters Ŵ, all im-
pulse responses hp

kl have to be available at a central FC. This
FC then has to solve the QCQP (5), which is an optimization
problem with KMLS variables. This introduces a single point
of failure, and furthermore, requires a high computational
capacity in the FC. To alleviate these problems, an efficient
distributed algorithm is presented in the next section, which
is then shown to converge to the same optimal PM filters.

IV. DISTRIBUTED ALGORITHM

Before presenting the distributed algorithm, the following
Gauss-Seidel procedure for solving the QCQP is discussed.
Here i denotes the iteration index and q is the updating node:

1) Initialize W0 randomly without violating any constraint
in (5), set i← 0 and q ← 1.

2) Solve the reduced dimensional QCQP to obtain wi+1
k,s for

all the nodes:

min
W

S∑
s=1

wT
s Rsws − 2wT

s rs + E{|dps(t)|2}

s.t.

S∑
s=1

wT
ql,sRxsxs

wql,s ≤ Pql ∀l (11)

wk,s = wi
k,s ∀s, k 6= q.

3) i← i+ 1, q ←mod(q,K) + 1 and return to step 2.
The following result holds for this Guass-Seidel procedure.

Theorem IV.1. If Rs has full rank ∀s and the sequence
{Wi}i∈N is generated by the Gauss-Seidel procedure defined
above, then

lim
i→∞

Wi = Ŵ. (12)

Proof. The proof starts by defining pi
s = wi+1

s − wi
s =

Eq(w
i+1
q,s − wi

q,s) ∀s. From the first KKT condition of (11)

2The optimal solution will no longer be unique when Rs is positive semi-
definite. The distributed algorithm presented in Section IV will in this case
converge to a particular minimizer of the problem, but it is not possible to
define which one, therefore positive definiteness is assumed.

(Lagrangian stationarity), it is clear that there exist {λi+1
ql ≥

0}l∈Ai+1
q

such that Wi+1 fulfills ∀s

ET
q

Rsw
i+1
s + rs +

∑
l∈Ai+1

q

λi+1
ql EqlRxsxs

ET
qlw

i+1

 = 0

(13)
where Ai+1

q is the set of active constraints. This leads to the
following identities ∀s:

pi,T
s

(
Rsw

i+1
s + rs

)
= −

∑
l∈Ai+1

q

λi+1
ql pi,T

s EqlRxsxs
ET

qlw
i+1
s .

(14)
Since Wi is a feasible solution of (11), it can be written as

Pql ≥
S∑

s=1

wi,T
s EqlRxsxsE

T
qlw

i
s

=

S∑
s=1

(
wi+1,T

s EqlRxsxs
ET

qlw
i+1
s + pi,T

s EqlRxsxs
ET

qlp
i
s

−2pi,T
s EqlRxsxs

ET
qlw

i+1
s

)
. (15)

Here l ∈ Ai+1
q implies that

∑S
s=1 w

i+1,T
s EqlRxsxsE

T
qlw

i+1
s =

Pql, resulting in the inequalities ∀l ∈ Aq:

2

S∑
s=1

pi
sEqlRxsxsE

T
qlw

i+1
s ≥

S∑
s=1

pi
sEqlRxsxsE

T
qlp

i
s. (16)

It can be verified using the definition of the cost function
J(W), (14) and (16) that

J(Wi)− J(Wi+1) =

S∑
s=1

(
pi,T
s Rsp

i
s − 2pi,T

s (Rsw
i+1
s + rs)

)
≥

S∑
s=1

pi,T
s Rsp

i
s +

∑
l∈Ai+1

q

λi+1
ql pi,T

s EqlRxsxs
ET

qlp
i
s


≥

S∑
s=1

λmin(Rs)||pi
s||2 ≥ λmin

S∑
s=1

||pi
s||2 ≥ 0 (17)

where λmin(Rs) denotes the smallest eigenvalue of Rs and
λmin = mins=1...S λmin(Rs). Since Wi+1 minimizes the cost
function under the same constraints as Wi, it must hold that
J(Wi+1) ≤ J(Wi),∀i > 0. Therefore, and since the cost
function J(W) is bounded below by zero, it holds that
∞∑
i=0

(
J(Wi)− J(Wi+1)

)
= J(W0)− lim

i→∞
J(Wi) <∞.

(18)
Using λmin > 0, this leads to the result

∞∑
i=0

S∑
s=1

||pi
s||2 ≤ ∞⇒ lim

i→∞
||Wi+1 −Wi||2 = 0. (19)

This shows that the sequence converges to a fixed point W∞,
i.e. solving (11) for every updating node will result in the same
solution W∞. It remains to show that this fixed point is indeed
Ŵ. This can be shown by writing out the KKT condition for
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this fixed point ∀q as is partly done in (13). Grouping these
equations will result in a set of KKT conditions as in (10),
for which only Ŵ can be the solution since this solution is
unique.

The optimization problem in (11) can, after some manipu-
lations and removing constants in the objective function, be
written as

min
Wq

S∑
s=1

wT
q,sRq,swq,s − 2wT

q,s

(
rq,s −Hp

qr
i
s +Rq,sw

i
q,s

)
s.t.

S∑
s=1

wT
ql,sRxsxswql,s ≤ Pql ∀l (20)

with Wq = [wq,1 ... wq,S ] and

Rq,s =
∑
p∈Bs

Hp
qRx̃sx̃sH

p,T
q + µ

∑
p∈Ds

Hp
qRx̃sx̃sH

p,T
q (21)

rq,s =
∑
p∈Bs

Hp
qE{x̃s(t)d

p
s(t)} (22)

ris =
∑
p∈Bs

Rx̃sx̃s
Hp,Twi

s + µ
∑
p∈Ds

Rx̃sx̃s
Hp,Twi

s. (23)

Although (20) is much easier to solve than (5) since it
has only LSM optimization variables, (23) still requires the
knowledge of all impulse responses hp

kl and current PM filters
in the WASAN. Luckily (23) can also be computed from the
error microphone signals as

ris =
∑
p∈Bs

E{x̃(t)ep(t)}+ µ
∑
p∈Ds

E{x̃(t)ep(t)}. (24)

Based on this observation, a distributed adaptive PM algo-
rithm (DA-PM) can be proposed as defined in Algorithm 1.
The steps that are presented in Algorithm 1 are more general
than the steps performed in the Gauss-Seidel procedure. To
avoid confusion, the iteration index is now put between
brackets (i). The differences are that in each iteration (i) of
Algorithm 1 a set of nodes Si is chosen to perform an update
of there local PM filters. Also, instead of updating each local
filter with the newly computed filter, a smooth combination
between the newly computed filter and the filter from the
previous iterations is used, using a predefined smoothing
parameter αi.

Proving convergence of Algorithm 1 can be done similarly
as in [11], which is omitted here for conciseness. The condi-
tions for αi to guarantee convergence are that

αi ∈ (0, 1]; lim
i→∞

αi;

∞∑
i=0

αi =∞ (25)

In practice this can be relaxed to a condition αi ≤ α?, where
α? depends on the eigenvalues of Rs ∀s, and so α? is scenario-
dependent. The condition for determining the sets Si for i =
0...∞ is that none of the nodes permanently stops the updating
process of its parameters. This means that when the number
of times a node k belongs to Si is counted for i = 0...∞, this
number will be unbounded. It is noted that this requires no

centralized controller, each node can on the fly decide when
and how often it performs an update of its parameters.

The above Gauss-Seidel procedure is obtained by choosing
Si = mod(i,K) + 1 and αi = 1 in Algorithm 1.

Algorithm 1: Distributed Adaptive PM algorithm
(DA-PM)

1 - Initialize w
(0)
k,s ∀k, s without violating any constraint in (5).

- i← 0.
2 - Each node k produces the loudspeaker signals for

t = 1...T :

ykl(iT + t) =

S∑
s=1

w
(i),T
kl,s x(iT + t) ∀l. (26)

3 - The error microphone signals ep(iT + t) ∀p are
transmitted to all nodes k ∈ Si.

4 - Each node q ∈ Si performs the following operations:
1) Collect T observations of ep(iT + t) ∀p and estimate r

(i)
s

using (24).
2) Compute a new estimates of hp

ql ∀l, p or reuse a previous
estimate.

3) Estimate Rq,s and rq,s using (21) and (22).
4) Solve QPCP (20) to obtain wnew

q,s ∀s.
5) Update the local PM filters as

w(i+1)
q,s = (1− αi)w(i)

q,s + αiwnew
q,s ∀s. (27)

5 - All other nodes k /∈ Si do not update their PM filters:

w
(i+1)
k,s = w

(i)
k,s ∀s. (28)

6 - i← i+ 1 and return to step 2.

The estimation of the impulse responses hp
kl in step 4.2 is

necessary to track possible changes in the impulse responses
and can be done using training sequences. The updating node
q then adds a training signal δql(t)3 that is uncorrelated with
the sounds, to its loudspeaker signals yql(iT+t) and estimates
the impulse responses as:

hp
ql = E{δql(t)δql(t)T }−1

T∑
t=1

δql(t)e
p(iT + t) ∀l, p (29)

with δql(t) = [δql(t) ... δql(t−N + 1)]T .
The advantages of the DA-PM are that the local computa-

tional complexity is much more relaxed and that there is no
need for commutation between the nodes or communication
with a FC. The disadvantage is that it requires multiple
iterations to converge to the optimal solution, and will hence
experience a slower tracking speed.

V. SIMULATIONS

To demonstrate the convergence of the DA-PM, 50 Monte
Carlo simulations are performed on a WASAN with K = 6
nodes, L = 4 loudspeakers per node and P = 10 error
microphones. Each error microphone randomly picks 1 out
of 3 sound signals as its required sound signal and defines

3Since this will distort the signal received at the error microphones, it can
also be useful to use colored noise (e.g. a noise signal with the spectrum below
the hearing threshold for all frequencies) to estimate the impulse responses
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Fig. 1: Evolution of ||Ŵ−Wi|| and J(W) for the DA-PM and
Gauss-Seidel procedure, compared to the optimal and stand-
alone solution.

its desired sound pressure as the clean required sound. The
sounds are generated as Gaussian noise with zero mean and
unit variance of T = 1000 samples. Pkl is set to 0.1 to
activate the constraints and µ = 2. The impulse responses
are modeled as random impulse responses with zero mean
and unit variance of order N = 10 and the PM filters have
order M = 10 as well. In the simulations, the proposed DA-
PM with Si = {1, ...,K} and αi = 0.5 for all iterations,
is compared to the Gauss-Seidel procedure, the optimal PM
filters and the stand-alone PM filters, obtained when each node
locally solves (11) with the PM filters of the other nodes put to
zero. Figure 1 shows ||Ŵ−Wi|| and J(W) for the different
filters in each iterations, averaged over 50 Monte Carlo runs.
Convergence can be observed and it is clear that the proposed
DA-PM method converges faster to the optimal solution than
the Gauss-Seidel procedure.

To evaluate the performance of the DA-PM, an acoustic
scenario is simulated using the image method [12] in a room
of dimension 5m × 5m × 3m and with a reverberation time
T60 = 0.222. There are 4 nodes, each having an array 4
loudspeakers, spaced 0.5m from each other, and each located
at 0.5m from a wall. The virtual source is located in the center
of the room and 3 error microphones are located in a radius of
0.5m from this center, each requiring a different sound signal.
The 3 different sound signals are 5 seconds of speech from
the HINT database. Pkl is also set to 0.1 and at iterations
40 and 80, all loudspeakers and error microphones are moved
0.2m in a random direction, realizing a change in the impulse
responses. M is set to 50. The used performance measure is
the distortion ratio, defined as

DR =

P∑
p=1

E{||dp(t)−
∑S

s=1 w
T
s H

px̃s(t)||2}
E{||dp(t)||2}

. (30)

The results for the different algorithms are shown in Figure 2.
It is clear that the Gauss-Seidel procedure and the DA-PM con-
verge to the optimal solution and that they can track changes

0 10 20 30 40 50 60 70 80 90 100 110 120

20

30

Iterations i

D
R

[d
B

] Gauss-Seidel
DA-PM
Optimal
Stand-alone

Fig. 2: Evolution of DR for the DA-PM and Gauss-Seidel
procedure, compared to the optimal and stand-alone solution.

in the acoustic environment. The DA-PM also outperforms the
stand-alone solution after 2 iterations.

VI. CONCLUSION

In this paper, PM based sound zoning has been considered
in a WASAN. A distributed adaptive PM algorithm has been
proposed, avoiding the high communication and computational
requirements of a centralized algorithm. The algorithm has
been shown to converge to the solution of the centralized
algorithm, by means of Monte Carlo simulations and evaluated
in a simulated acoustic scenario.
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