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Abstract—In this paper, we present the novel approach of the
liveness detection in speech signal based on constant-Q transform
(CQT) which employs geometrically distributed frequency bins.
Pop noise can be attributed to the liveness in the speech signal
and we exploited this attribute for liveness detection. Pop noise is
created due to spontaneous breathing while uttering the certain
phonemes which includes the plosive burst, and it has low
frequency characteristics. We follow the approach of liveness
detection in original POCO dataset paper as baseline, where
features are derived from Short-Time Fourier Transform. In
our approach, we exploited the low frequency characteristics
of pop noise using CQT which has variable spectro-temporal
resolution with high resolution at low frequency regions. The
experiments are performed on recently released publicly available
POp noise COrpus (POCO) dataset. The 10-fold cross-validation
performed using proposed approach shows improvement in
absolute accuracy by 4.2% as compared to the baseline system.
The proposed approach also shows relatively better performance
for our disjoint partition (in terms of speakers) of the dataset.

Index Terms—Voice liveliness detection, pop noise, CQT, SVM,
POCO dataset.

I. INTRODUCTION

As voice is the most convenient and natural way of
communication, voice biometrics has emerged in many real-
time applications, such as financial transactions, commanding
the personal devices. This leads to the development of the
robust ASV systems. However, this robustness in ASV system
made it more susceptible to the spoofing attacks [1]–[3].
Spoofing may be performed through speech synthesis (SS),
voice conversion (VC), mimicry, and replay attacks [4]–[7]. To
alleviate these issues, the research community in the field of
ASV and anti-spoofing has organized several challenges, such
as ASVSpoof challenge campaigns during INTERSPEECH
conferences [8]–[10]. Many algorithms are developed in these
challenges itself and later based on the standard datasets and
evaluation metrics provided by these challenge organizers.
These algorithms are mainly developed using the spectrogram-
based feature sets followed by conventional (GMM, SVM)
or deep learning-based architectures (Light-CNN, Siamese
Network). Few best performing architectures can be studied in
[11]–[17]. Comprehensive review of the challenge campaign
can be studied from [18].

These challenge campaigns include the datasets to develop
the countermeasure system for VC, SS or replay spoofing

attacks that use the distortions introduced by spoofing mech-
anism as a signature to detect the spoofing attack. However,
less attention is given towards the liveness detection to avoid
the spoofing attacks. To that effect, recently POCO (POp
noise COrpus) dataset is constructed which can be used to
build the countermeasure strategies against spoofing attacks
by identifying the presence of pop noise present in live, i.e.,
genuine speaker’s voice [19]. Pop noise causes the distortion
in the speech signal introduced by the speaker’s breath. Thus,
it is the characteristic of the live speech. Identifying the pop
noise for live speaker detection might be very useful strategy
in the applications where the testing microphone is placed at a
short distance from the speaker, and consequently this strategy
may protect the ASV system from spoofing attacks.

Liveness detection for spoofing detection is proposed for
the first time in [20], where two approaches of liveness
detection are proposed: (a) low-frequency-based single chan-
nel detection, (b) subtraction-based pop noise detection with
two channels. In the former approach, Short-Time Fourier
Transform (STFT) around lower frequency region is utilized as
the pop noise exists in the lower frequency regions. Whereas
in the later approach, entire frequency range of the spectrum
is utilized. In [21], phoneme-based pop noise detection is per-
formed for liveness detection along with speaker verification
system, where pop noise duration is detected in the utterance
and estimated phonemes in this duration are analyzed for
liveness detection. The similar approach of phoneme-based
pop noise detection was utilized in [22] with extended study on
Gammatone Frequency Cepstral Coefficients (GFCC) feature
set for pop noise detection.

In this paper, we propose to exploit geometric frequency
spacing of the constant-Q transform (CQT)-based spectral
representation for the liveness detection. In this work, we have
replaced the STFT with CQT in the algorithm proposed in
[20]. The key motivation of using CQT is its high frequency
resolution in low frequency regions by which CQT is capable
of capturing the prominent cues for liveness detection present
in the low frequency regions. The experiments are performed
using 10-fold cross-validation and have obtained the promising
results which are discussed in Section IV.
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Fig. 1. Block diagram of proposed algorithm

II. PROPOSED APPROACH

A. Pop Noise

During speech production, airflow travels from the lungs
to vocal folds, excites vocal tract system and finally, it bursts
out from the mouth as a sound wave. While capturing this
sound via microphone, if the distance between speaker and
microphone is less, the microphone in addition to capturing
speech signal, it also captures the friction between lips and
the airflow as plosive burst which is termed as pop noise.
On the other hand, the attacker who is trying to record the
voice usually cannot put recording device near to the live
speaker and hence, due to increase in distance between live
speaker and recording device, pop noise will not be present
or with very low intensity when the attacker will replay it to
the microphone. Hence, by recognizing the pop noise, we can
distinguish between the live (genuine) speech and the replayed
speech [23]. Hence, pop noise can act as a important acoustic
cue for voice liveness detection systems.

B. Baseline Algorithm

In [20], the features for pop noise detection, are derived
from STFT. The same algorithm is used in [19] for liveness
detection on POCO dataset. Therefore, we considered it as a
baseline approach.

In baseline approach, spectral energy densities of the speech
signal is estimated using STFT spectrogram. Let, Seng be the
spectral energy densities of the initial frequency bins which
corresponds to 0-Fmax Hz. For this work, Fmax was chosen
as 40Hz as pop noise is present at low frequency regions
[20]. Then, Fk,avg is calculated as average of the spectral
energy densities of the STFT spectrogram (where k is the
frame index) by applying averaging operation across the bins
on Seng for each frame. Then, mean and standard deviation
is estimated for averaged spectral energies Fk,avg . Now, this
mean and standard deviation is used for normalization of
Fk,avg to obtain Fk,avg,norm. Then, 10 frames were chosen
with largest spectral energies. This is done by taking 10 frames
from Fk,avg,norm having largest values and then taking frames
corresponding to that indices from Seng . Utterances from the
RC-A subset were labeled as positive, and samples from the
RP-A subset were labeled as negative.

C. Proposed Algorithm

In the proposed algorithm, we have employed constant
Q transform (CQT) instead of STFT in order to obtain the
high resolution frequency bins in low frequency regions. The
block diagram of proposed algorithm is shown in Fig. 1. The

Algorithm 1 Pseudo Code of Proposed Algorithm
1: Fcqt = cqt(x), Applying CQT to speech signal,
2: Seng = (abs(Fcqt(1 : Fbins(40Hz), :)))

2, Taking bins upto
40Hz only,

3: for i=1:length(Seng) do
Fk,avg = mean(Seng(:, i)), Taking average of CQT

spectrogram along column vector,
4: MN = mean(Fk,avg), SD = std(Fk,avg), Estimate

mean and standard deviation,
5: for i=1:length(Fk,avg) do

Fk,avg,norm = (Fk,avg(i)−MN)/SD , Normalising,
6: [Fk,avg,norm,sort, index] = sort(Fk,avg,norm) , Sorting,
7: Fk,avg,intial = Fk,avg,norm,sort(1 : 10, :) , Taking initial

10 frames,
8: indexinitial = index(1 : 10, :), Taking corresponding

indices,
9: for i=1:length( Fk,avg,intial) do

feat = Seng(:, indexinitial(i)), Feature set

motivation behind using CQT is that in realistic scenarios of
speech production and perception, the frequency of the speech
signal doesn’t have constant frequency interval rather it has
geometrical distribution [24]. As while applying STFT, the
subband filters have constant frequency interval, they might
be unable to map the frequency content of the speech signal
accurately. Therefore, we propose to use CQT instead of STFT
as it uses constant-Q ratio of center frequency to resolution and
hence, giving the geometrically-spaced subband filters. The
center frequency fc of cth frequency bin is obtained by [24]:

fc = fl · 2
(c−1)

B , (1)

where fl is the center frequency of the lowest frequency bin,
and B is the number of bins per octave. The Q factor is given
by [24]:

Q =
fc

fc+1 − fc
=

1

21/B − 1
. (2)

The pesudo code of the proposed algorithm is illustrated in
Algorithm 1. Here Fcqt is obtained by uniform resampling
of log power magnitude spectrum obtained by applying CQT.
Further, the average of CQT spectrogram Fk,avg within the
interval [0, Fmax] is computed for each column vector. As pop
noise is present at low frequency region, we have considered
Fmax as 40 Hz. In the proposed algorithm, Seng for CQT is
computed as it was computed in baseline algorithm for STFT.

Then normalization of Fk,avg is done to zero-mean and unit
standard deviation to obtain Fk,avg,norm. Then 10 frames from
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TABLE I
STATISTICS OF THE POCO DATASET FOR OUR EXPERIMENTS.

Subset # Utterances # Speaker # Male # Female
Training 6952 27 13 14

Development 3432 13 6 7
Evaluation 6600 26 13 13

Fk,avg,norm is considered which have largest values, and then
taking frames corresponding to that indices from Seng .

III. EXPERIMENTAL SETUP

If an attacker wants to do a spoof attack, the attacker must
somehow obtain the samples of the genuine speaker. The
simplest way to do this is by recording (eavesdropping) the
voice of genuine speaker and then replaying it in front of ASV
system. In realistic scenarios, this recording will be done from
long distance due to which the pop noise will not be recorded
by the attacker’s microphone and there will be absence of pop
noise in the replayed sample.

A. Database Used

In this work, we have used recently released POCO dataset
[19]. The dataset is sampled at 22050 Hz with a bit rate of
24-bits. There are total of 66 speakers in which 34 are male
and 32 are female. The words were selected such that all 44
phonemes in English language were covered in the recording.
The dataset has three subsets, namely, RC-A (Recording with
Microphone), RP-A (Eavesdropping), and RC-B (Recording
with Microphone Array) . We have excluded the RC-B subset
for our experiments as it consists of microphone array and it’s
corresponding spoof speech utterances are not provided. Also
the experiments in [19] are performed using RC-A and RP-A
subsets. The details of RC-A and RP-A are as follows:

1) Recording with Microphone (RC-A): The recording was
done with Audio-Technica AT4040 microphone. This subset
represents genuine speaker as it was recorded directly with
the live speaker and hence, contains pop noise. The distance
between speaker and microphone was fixed to be 10 cm.

2) Eavesdropping (RP-A): Here the scenario is considered
where replay attack is done by an attacker and for that
recording is done from a long distance, i.e., without pop noise.
This is done by using Audio-Technica AT4040 microphone
with a pop filter inserted between speaker and microphone.
The distance between speaker and microphone was fixed as
10 cm.

The dataset is partitioned into training, development, and
evaluation subsets as 40%, 20%, and 40% utterances, respec-
tively. Each of these subsets consist of half of the genuine and
half of the spoof speech utterances. We also ensured that the
speakers are exclusive in each subset and the ratio between
male and female speaker is maintained. The statistics of
the data distribution in training, development, and evaluation
subset is shown in Table I.

Fig. 2. Spectrogram is shown for word ’thong’. Panel I (a), (b), and (c)
shows the speech signal, spectrogram obtained by applying STFT, and CQT
respectively for the genuine utterance. Panel II (a), (b), and (c) shows the
speech signal, spectrogram obtained by applying STFT, and CQT, respectively,
for the spoofed utterance. The pop and non pop locations are highlighted by
circle and rectangle box, respectively, for both the spectrograms.

B. Feature Sets, Classifier, and Performance metric

In this study, we used the algorithm explained in Section
II-B as a baseline algorithm which is based on STFT. We
propose to use CQT-based spectral representation instead of
STFT. The CQT seems to be more apt choice for this appli-
cation as CQT exhibits high frequency resolution for the low
frequency regions which is important to analyze the presence
of pop noise. We have taken number of bins per octave (B)
as 96 to get CQT based spectrum. Number of samples in first
octave was set as 2. The minimum and the maximum frequecy
for CQT computation is set as fmin = fs

215 = 0.48 Hz and
fmax = fs

2 = 11025 Hz. We have set fmin such that we can
capture low frequency regions with high resolution with the
help of CQT.

We have selected the Support Vector Machine (SVM) as
a classifier as it was used in the baseline [19]. SVM is
a non-probabilistic binary linear classifier as it assigns any
new data point directly to the one of the classes. The SVM
gives an optimal hyperplane given labeled training data which
categorizes new examples [25], [26]. Usually, kernel trick is
used for transformation of data into suitable form for the
classification [25]. We have used 2-class linear kernel for the
classification task [26]. Further, L2 regularization is used along
with hinge loss for ”maximum-margin” classification.

We have reported all the results in terms of % accuracy.

IV. EXPERIMENTAL RESULTS

A. Spectrographic analysis

Fig. 2 shows speech signals and corresponding spectrograms
for the genuine and spoofed speech utterances, respectively,
after applying baseline and proposed algorithm. Since the
pop noise is observed as high energy at low frequency re-
gions, we can observe high spectral energy density in the
lower frequency regions (approximately below 40 Hz) for
the genuine speech (Panel I) which is interestingly absent
for spoofed speech (Panel II) for both STFT- and CQT-based
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Fig. 3. Comparison of word accuracy on development and evaluation set for baseline vs. proposed algorithm. The word labels in Fig. 3(a) are similar to that
of Fig. 3(b).

spectrograms. Furthermore, it can be observed that the spectral
energy density obtained for pop noise using STFT spectrogram
is relatively poor than CQT spectrogram, indicating that CQT
brings out effect of pop noise more predominantly than the
STFT. It might be due to high resolution characteristics of the
CQT at low frequency regions. Hence, CQT is much better
choice to obtain the higher classification accuracy.

B. Results

We have performed 10-fold cross-validation and obtained
overall accuracy of 62.29 % for baseline (STFT-based) and
66.49 % for proposed (CQT-based) algorithm. It can be
observed that, the relative improvement of 6.4% in accuracy
is obtained by the proposed algorithm over the baseline. We
have also performed experiments for score-level fusion of the
baseline and proposed algorithm. Fig. 3 (a) represents the
comparison of word accuracy on development set for baseline,
proposed algorithm, and their score-level fusion. Fig. 3 (b)
represents the comparison of word accuracy on evaluation set
for baseline, proposed algorithm, and their score-level fusion.
Here, for baseline and proposed algorithm, we can observe that
for words, such as ’busy’, ’fat’, ’funny’, ’five’, ’thong’, ’shout’
the accuracy is around 80 % as there is higher probability of
presence of pop noise for these words. Moreover, proposed
method performs much better as it gives higher accuracy for

these words when compared to the baseline. For the other
words, the accuracy is bit lower, still when compared the
proposed methods, perform well than the baseline except
for few words like ’laugh’, ’who’, and ’wolf’. Furthermore,
the score-level fusion is performed on the likelihood scores
obtained from baseline (STFT-based) and proposed (CQT-
based) algorithm. We can observe that there is relative increase
in % accuracy for both development and evaluation set for all
the words. It suggest that the STFT and CQT captures the
complementary information for liveness detection.

V. SUMMARY AND CONCLUSIONS

In this paper, we exploited the the pop noise as attribute of
the genuine speech and it is effectively used for replay spoof
attack detection. We proposed the novel approach of liveness
detection using the features derived from CQT spectrogram
on recently proposed POCO dataset. The results of proposed
approach are compared against the baseline, where feature
sets are derived from STFT. The spectrographic analysis for
genuine (live) vs. spoof speech is performed which showed
that the pop noise is emphasized in much better way for CQT-
based spectrogram. The fact is validated by performing the
experiments using 10-fold cross-validation which shows that
the proposed approach shows relatively better performance
in detecting the liveness in speech. However, this approach
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of replay spoof detection is useful only when the distance
between microphone and speaker is less for genuine recording
because pop noise can be captured from short distance only.
Moreover, in the dataset it is assumed that the distance between
attacker’s recording device and genuine speaker is large and
hence, the pop noise do not get captured by the recording
device. In the future, it can be interesting to analysis the
behaviour of pop noise when distance between attacker’s
recording device and genuine speaker is less i.e. the effect
of distance between the speaker and recording device. Also
replay of speech can be considered instead of using pop filtered
speech to see the significance of pop noise from the view of
practical deployment.
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