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Abstract—Liveness detection has advanced for many biomet-
rics, such as face, iris, hand geometry, etc. However, less emphasis
is given to liveness detection for voice biometrics, i.e., Voice
Liveness Detection (VLD). Pop noise is produced due to the
spontaneous breathing while uttering a certain class of phonemes
(such as fricative, affricates, plossive, nasal, etc.) which has low
frequency characteristics. In this paper, phase-based information
for analysis of pop noise is used as a feature for VLD task.
We have use modified group delay function based cepstral
coefficients (MGDCC) as a feature for VLD task. Experiments are
performed using two different types of classifiers, i.e., Gaussian
Mixture Model (GMM) and Convolutional Neaural Network
(CNN). Our results indicate an overall improvement in accuracy
by 17.16% and 1.38% for MGDCC-CNN and MGDCC-GMM
systems respectively.

Index Terms—Voice liveness detection, Modified Group Delay
Function, Pop noise, GMM, CNN, POCO dataset.

I. INTRODUCTION

Due to recent technological developments, voice biometrics
have been extensively used for banking transactions, border
control, homeland security, smartphones, etc. Hence, the need
for robust Automatic Speaker Verification (ASV) system has
also increased [1], [2]. The ASV system is used to prevent the
voice biometrics from harmful intent of the attacker. However,
with the recent progress in various speech technologies, at-
tempts to spoof an ASV system has been made using spoofing
attacks, such as voice conversion, speech synthesis, replay, and
impersonation attacks [3]–[5]. The severity of these attacks
has made the spoofing detection as one of the important
research issue in the field of ASV. In the past five years,
several challenges have been organized, such as ASVSpoof
challenges during INTERSPEECH conferences with the aim
to improve performance of anti-spoofing for attack-resistant
design of ASV systems. [6], [7].

In the light of these challenges, many countermeasures to
detect spoofing attacks have been developed and evaluated on
the standard datasets provided by the ASVSpoof challenge or-
ganizers. These challenge campaigns focussed on performance
of the countermeasure systems for the anti-spoofing. In this
paper, the focus is centered on the Voice Liveness Detection
(VLD) to avoid the spoofing attacks on ASV system. Recently,
POCO (POp noise COrpus) dataset [8] is build to develop
various countermeasures against spoofing attacks to detect the
human liveness evidence in the speech signal via pop noise
detection. Identification of the genuine speaker characteristics

(i.e., VLD task) through pop noise detection can be potentially
effective when the distance between the testing microphone
and the speaker is very less, which consequently leads to detect
the spoofing attacks.

Human liveness detection for detecting spoof attacks was
proposed for the first time in [9], where two approaches for
VLD are proposed: (a) low-frequency based single channel
detection, and (b) subtraction-based pop noise detection with
two channels. In the former approach, entire Short-Time
Fourier Transform (STFT) around lower frequency region is
utilized as the pop noise exists in the lower frequency regions.
Whereas in the later approach, entire frequency range of
the spectrum is utilized. In [10], phoneme-based pop noise
detection is performed for VLD along with ASV system,
where pop noise duration is detected in the utterance and
estimated phonemes in this duration are analyzed for VLD.
The similar approach of phoneme-based pop noise detection
was utilized in [11] with extended study on Gammatone
Frequency Cepstral Coefficients (GFCC) feature set for pop
noise detection.

To the best of the authors’ knowledge, this is the first
study of its kind to detect pop noise by exploring the phase-
based features which exploits Fourier transform phase spec-
trum information of the signal rather than the conventional
magnitude spectrum-based features. We have applied Modified
Group Delay (MGD) funtion as feature extraction method
which provides discriminative information in spectral regions
by showing better spectral resolution in comparison to the
magnitude spectrum [12], [13]. Furthermore, the feature ob-
tained from MGD function is used with GMM and CNN
classifier to detect the presence of pop noise in a signal, which
has shown satisfactory results.

II. PROPOSED ALGORITHM
A. Pop Noise

During natural speech production mechanism, speech wave
is a result of airflow travelling from the lungs to the vocal folds
which excites the vocal tract system (that acts as cascade of
several 2nd order resonators representing organ pipes) causing
the bursts of air coming out of the mouth [14]. If this sound
is captured at a small distance from the microphone and a
speaker, the microphone along with the speech signal also
tends to capture the friction between the lips as bursts which
is termed as pop noise [9]. The distance between the speaker
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and microphone and the intensity of the pop noise detected
via microphone have Inverse relationship with each other. The
intensity of the recorded pop noise cannot be high if the
distance between the microphone and the speaker is large. This
phenomena can be used to prevent the information in speech
signal from the attacker who is trying to record the voice for
fraudulent attack. The attacker may not be able to place the
recording device near the speaker leading to the absence of pop
noise in the recorded voice. Hence, detection of pop noise can
provide genuine acoustic cues for VLD which will further be
able to detect between the live (genuine) speech and replayed
speech.

B. Baseline Algorithm
In our work, detection of pop noise is considered as two-

class classification task, where utterances with pop noise are
labelled as genuine while utterances with absence of pop noise
is labelled as imposter (spoof). The baseline is implemented
with the methodology given in [8]. Spectrograms are used as
input features.Seng is obtained by considering spectral energy
densities corresponding to [0, fmax]. Since the pop noise is
observed in the lower frequency region of the spectrogram
features, fmax is considered as 40Hz. After that favg is estimated
as the average of the spectral energy densities for each frame.
Then, the mean and standard deviation is taken for favg across
all the frames. Then, mean and standard deviation is estimated
for averaged spectral energies favg to normalize it. Then, 10
frames with largest spectral energies were chosen. This is done
by taking 10 frames from normalized favg having largest value
and then taking frames corresponding to that indices from Seng.
This feature set with appropriate labels, is given as input to
Support Vector Machine (SVM) for proposed/VLD task. The
more details of this baseline algorithm is given in [9].

C. MGD feature
It is common practice to extract information from the

magnitude spectrum of the signal since it involves less com-
putational complexity as compared to phase spectrum which
requires computationally intensive task of phase unwrap-
ping to invert artifacts of arctangent function. However, the
speech signal information resides in both the magnitude and
phase component which has motivated to explore the phase
characteristics of the pop noise signal including very recent
application in spoofed speech detection [15]. To this initial
step, we have considered Group Delay (GD) function which
observes the rapid variations in the unwrapped phase function
and has a property to better resolve the resonant peaks of a
signal. GD function is a potential alternative to the magnitude
spectrum and has been employed extensively in a feature
extraction process for detecting other spoofing attacks along
with conventional classifiers such as Gaussian Mixture Models
and complex Deep Neural Network based classifiers [16]–[20].

The true meaning of the GD function lies in the time shifts
introduced by the systems having linear phase characteristics.
This concept can be simply extended to the non-linear phase
characteristics by linearly approximating the narrowband input
of the non-linear phase system. The approximate effect of the

system on the input involves magnitude shaping and multipli-
cation by complex constant factor and localized linear phase
term corresponding to time delay (in seconds). This overall
time delay introduced by the system in the input is referred as
Group Delay [21] i.e., this group delay is being experienced by
a group of frequencies (narrowband corresponding to localized
linear phase slope) in the input.

Fig.1 is shows speech segments, magnitude spectrum, group
delay function, and modified group delay function for both
the classes of speech. We can see that group delay function
is showing very poor speech structure. This is primarily
because the speech segments considered are non-minimum
phase signal in which presence of zeros near the unit circle
in the z-plane causes sharp spikes, interfering with the speech
structure while MGD improves the structure (to be discussed
shortly). In additional, better speech structure formation for
pop noise through MGD can be seen than without pop noise
speech segment.

1) Feature Extraction: The speech signal x(n) is analyzed
with the help of Short-Time Fourier Transform (STFT) to
extract the MGD feature. The magnitude and phase represen-
tation of x(n) is given by Eq.(1):

X(ω) = |X(ω)| ejφ(ω), (1)

where |X(ω)| and φ(ω) are the magnitude and phase spectrum
at frequency ω. To extract the information from the STFT
phase function of the speech signal, negative derivative of the
phase function is processed which is the Group Delay (GD)
function, i.e. ,

τ(ω) = − d

dω
φ(ω) = −imag[ d

dω
log(X(ω))], (2)

In Eq.(2), GD function requires the phase function φ(ω) to
be unwrapped which satisfies that all the multiples of 2π have
been included in φ(ω) to contribute towards the true time delay
which is a complex task [22]. Therefore, the GD function is
computed by invoking the Fourier Transform(FT) property of
instantiation frequency domain as shown in Eq.(3):

τ(ω) =
Xr(ω)Yr(ω) +Xi(ω)Yi(ω)

|X(ω)|2
, (3)

where X(ω) and Y (ω) are the STFT of the x(n) and nx(n),
r and i are the real and imaginary parts respectively. The
GD function introduces effects, namely, spikes and pitch
periodicity which occurs when zeros of X(ω) lie close to
the unit circle in z-plane which causes denominator term to
become very small. The MGD was introduced to avoid these
effects by cepstral smoothing the denominator |X(ω)| term
with the help of parameters ρ and γ [12], [13], [23], [24]. The
MGD function is represented in Eq.(4) as follows:

τ(ω) =
Xr(ω)Yr(ω) +Xi(ω)Yi(ω)

|Xc(ω)|2ρ
, τm(ω) =

τ(ω)

|τ(ω)|
|τ(ω)|γ ,

(4)
where |Xc(ω)| is the cepstrally smoothed version of |X(ω)|
and ρ and γ are the fine tuning parameters. τm(ω) is the final
MGD function. The algorithm for the MGD function is given
as follows [13] :
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Fig. 1. Panel I (a), (b), (c), (d) shows the speech segment containing pop noise (genuine) and corresponding magnitude spectrum, group delay, and modified
group delay function, respectively, and corresponding plots for without pop noise (spoofed) utterance is shown in Panel II.

• Compute the STFT of the signal x(n) and nx(n) i.e.,
X(ω) and Y (ω).

• Perform the cepstral smoothing on |X(ω)| in order to
obtain |Xc(ω)|.

• Compute the MGD function as given in Eq.(4).
• Compute the MGD function for different values of the

parameter ρ and γ to get the better results.
• Applying Discrete cosine transform (DCT) to obtain

cepstral coefficient.

III. EXPERIMENTAL SETUP

A. Dataset Details

In practical scenarios, if an attacker tries to attempt a spoof-
ing attack, he/she must somehow obtain the voice samples of
the target (genuine) speaker. The simplest way to do this is
by recording (eavesdropping) the voice of target speaker and
then using it to mount a replay attack onto the ASV system.
Since these recordings will be done from long distances, pop
noise will not be recorded by the attacker’s microphone and
this absence of pop noise in the replayed sample will be able
to flag the spoofed speech from the genuine speech.

In this work, we have used recently released POCO dataset
[8]. There are total of 66 speakers out of which 34 are male
and 32 are female. The words were selected from the English
language such that all the 44 phonemes are covered in the
recording. The dataset is sampled at 22050 Hz sampling
frequency with a bit-depth of 24-bits. The dataset has three
subsets, namely, RC-A (Recording with Microphone), RP-

A (Eavesdropping), and RC-B (Recording with Microphone
Array). We have excluded the RC-B subset for our experiments
as it consists of microphone array, and it’s corresponding
spoof speech utterances are not provided. In addition, the
experiments in [8] are performed using RC-A and RP-A
subsets. The details of RC-A and RC-B are as follows:

1) Recording with Microphone (RC-A): This subset rep-
resents genuine speaker as it was recorded directly with the
live speaker and hence, contains pop noise. The recording was
done with Audio-Technica AT4040 microphone. The distance
between speaker and microphone was fixed to be 10 cm.

2) Eavesdropping (RP-A): Eavesdropping is done to imitate
a scenario where replay attack is done by an attacker from
a long distance, i.e., without pop noise. This condition is
simulated by using Audio-Technica AT4040 microphone with
a suitable pop filter inserted between speaker and microphone.
The distance between speaker and microphone was fixed as
10 cm. The dataset is partitioned into training and evaluation
subsets as 80% and 20% utterances, respectively. Each of
these subsets consists of half of the genuine and half of the
spoof speech utterances. We also ensured that the speakers are
exclusive in each subset and the ratio between male and female
speaker is maintained. The statistics of the data distribution in
training and evaluation subset is shown in Table I.
B. Feature Set

Modified Group Delay Cepstral Coefficient (MGDCC) is
computed from the Modified Group Delay function of the
speech signal converting them into cepstral coefficients. De-
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Fig. 2. Comparison of accuracy (in %) for baseline, MGDCC (GMM), and MGDCC (CNN)

TABLE I
STATISTICS OF THE POCO DATASET FOR OUR EXPERIMENTS

Subset # Utterances # Speaker # Male # Female
Training 13552 53 26 27

Evaluation 3432 13 6 7

tails about the computation and advantages of the MGDCC
feature has been discussed in the Section II-C. The range of the
fine tuning parameters, ρ and γ varies between 0 to 1 which
can be fixed depending on the experimental analysis of the
problem at hand. For the classification task, MGDCC feature
has been extracted with the help of Hamming window of 25ms
duration and 10 ms shift along with 16-Dimensional cepstral
features for various combinations of ρ and γ. Experimental
results for the implementation of different values of tuning
parameters are discussed in Section IV.
C. Classifier

We have performed experiments using Gaussian Mixture
Model (GMM) and Convolutional Neural Network (CNN) as
classifiers. GMM is used as a two-class classifier, where the
two classes correspond to the speech samples containing pop
noise (genuine) without pop noise (spoofed). The individual
GMM is trained on genuine and spoofed speech using the
extracted MGDCC feature sets. Total 128 GMM mixture
models are used. The CNN network consists of 3 convolution
blocks, and 3 Fully-Connected (FC) layers. Each convolution
block consists of a 2−D convolution layer accompanied by a
max-pooling layer to remove the inconsistencies in the feature
map. Kernel size of 3 × 3 is taken for both convolution and
max-pooling operations. In addition, convolution operation is
performed using zero padding with a stride of 2. The final
convolution block is followed by 3 fully-connected linear
layers with distinct hidden units. Sigmoid is used as an
activation function at the output of final layer to make the
final decision of whether the utterance contains pop noise or
not. In hidden layers, Rectified Linear Unit (ReLU) function
is used as the activation function. The model is trained using
Stochastic Gradient Descent (SGD) algorithm with a batch size
of 64, and learning rate of 0.001. Binary cross-entropy loss is
chosen as the loss function. The experiments are executed for

a total number of 400 epochs. The experiments are performed
using speaker-independent and customized disjoint partition of
the dataset as shown in Table I.

IV. EXPERIMENTAL RESULTS

In Fig. 2 wordwise accuracy is shown for baseline,
MGDCC-GMM , and MGDCC-CNN, where GMM and CNN
is used as a classifer. It can be observed that for words such
as sham, shout, summer, bird and, gun MGDCC-GMM is
performing slightly better than the baseline algorithm while for
other words both are almost comparable. For few words, such
as quick, who, wolf and, you the performance of MGDCC-
GMM is slightly poorer than the baseline. The probability
of presence of the pop noise in differents words vary which
will also affect the system performance. For plosive sound
presence of pop noise is expected to be more as it produces
due to friction from the lips whereas words containing nasal
sound will have less pop noise intensity. However, when CNN
is used as a classifier with MGDCC feature set (MGDCC-
CNN), there is significant improvement in the accuracy when
compared to the baseline. The average accuracy for MGDCC-
CNN system is obtained as 79.45 % which is 63.67 % for
MGDCC-GMM system and 62.29 % for the baseline system.

Fig. 3. Waterfall plot showing the differences between speech signals (a)
containing pop noise, and (b) without pop noise.
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Hence, their is improvement of around 17.16 % for MDGCC-
CNN system and around 1.38 % for MGDCC-GMM system
when compared to the baseline system. It can be also observed
that when CNN is used as classifier along with MGDCC,
the performance is improved when compared to MGDCC-
GMM system. In additional, for MGDCC-CNN system for
word which have high probability of pop noise, such as thong,
shout, who, five, and wolf the average accuracy is around 85
% which is around 70 % for the baseline system. The results
suggests it is necessary to consider the phoneme information of
the utterances to reject spoofing attacks more robustly, which
is introduced in [25].

In Fig. 3, waterfall plot is shown for genuine (with pop
noise) and spoofed (without pop noise, i.e., with pop fil-
ter) utterances. Differences between the genuine signal and
spoofed signal can be observed clearly, which is learned by the
classifier for the VLD task. Also, for different combinations of
tuning parameters, some of the best results observed is shown
in Table II with GMM as a classifier. Particularly for this
experiment for the better analysis, dataset is divided into 40%
for the training dataset, 20% for the development, and 40%
for the evaluation dataset making sure that the speakers are
exclusive in each dataset.

TABLE II
RESULTS FOR MGDCC-GMM FOR SOME COMBINATIONS OF γ AND ρ.

γ ρ
Accuracy (%) on
Development set

Accuracy (%) on
Evaluation set

0.1 0.4 77.45 70.05
0.2 0.2 79.90 71.20
0.2 0.8 75.55 69.15
0.4 0.8 69.81 65.53

V. SUMMARY AND CONCLUSIONS

This study presents one of the first study study to investigate
the phase-based features to detect voice liveness. MGDCC fea-
ture alone has shown promising results using both the GMM
and CNN classifiers. This has shown path to investigate other
phase based features which can be combined with magnitude
based features to extract signal information to a greater extent.
Furthermore, fusion of the features at score-level can also
be performed to get better insight on the pop noise signal
characteristics. The future work will focus towards utilizing
the phase-based features with deep learning architectures to
detect pop noise.
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