
Design of IIR Filters for Active Noise Control by
Constrained Optimization

Florian Hilgemann, Johannes Fabry, Peter Jax
Institute of Communication Systems (IKS)

RWTH Aachen University, Germany
{hilgemann,fabry,jax}@iks.rwth-aachen.de

Abstract—In the rapidly growing hearables market, active
noise control (ANC) is a feature that customers increasingly
demand. In this contribution, we present a design procedure
for time-invariant infinite impulse response (IIR) feedforward
filters for ANC applications. The filter minimizes a perceptually
motivated cost function and can be computed using a nonlinear
optimization solver. The design procedure yields filters that
realize a user-defined active attenuation in the presence of
constraints regarding stability and filter magnitude response.

We verify the presented approach through simulation and real-
time measurements for several design examples. Furthermore, we
relate the achieved performance to an upper bound and investi-
gate the impact of the constraints on the resulting performance.

Index Terms—Active noise control, acoustic equalization, con-
strained optimization, nonlinear optimization

I. INTRODUCTION

Exposure to noise has become increasingly common in
today’s society, causing a growing demand for insulation
in hearable devices. In-ear and over-the-ear devices provide
passive insulation, which tends to be insufficient at low fre-
quencies. Active noise control (ANC) is able to complement
passive attenuation favorably [1], [2].

Utilizing the capabilities of modern signal processors, ANC
systems are typically implemented by means of digital fil-
ters. Since there is a direct connection between processing
latency and performance, the filters are often operated at
high sampling rates. Simultaneously, strict demands regarding
algorithmic complexity and device form factor are imposed.
Thus, pre-optimized time-invariant filters are often preferred
to adaptive ones. Infinite impulse response (IIR) filters are
especially well-suited for operation at high sampling rates
since they require fewer resources than finite impulse response
(FIR) filters. In addition, commercially available hardware
platforms often only support second order sections (SOS).

Recently, active acoustic equalization (AAE) was proposed
as a generalization to ANC which facilitates a fit to a user-
defined overall magnitude response [3], [4]. Besides the well-
known use-case ANC, it can also be employed to design an
acoustically transparent ear-piece [5]–[7]. Despite the versatil-
ity it offers in terms of applications, AAE filter design methods
have so far been limited to FIR filters. It is possible to convert
the FIR filter to an IIR filter, however, this will likely impair
the performance since the resulting filter is no longer optimal
in terms of the original design criterion.
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Fig. 1. Model of the digital AAE system (illustration not to scale).

In this contribution, we investigate an approach to the design
of IIR feedforward filters which is based on direct optimiza-
tion. Intrinsically, this leads to a non-convex optimization
problem. Thus, the solution depends on the starting point and
is not guaranteed to be globally optimal [8]. However, we
show that well performing solutions can be found by virtue
of state of the art solvers for nonlinear optimization such
as the sequential quadratic programming (SQP) algorithm.
Another novelty is the explicit integration of constraints, which
renders the presented approach flexible and versatile. We
verify the approach by means of simulations and dummy head
measurements.

II. SYSTEM OVERVIEW

We consider a digital feedforward system as depicted in
Figure 1, which we conceptually divide into an analog and
a digital part. We denote analog signals with time t and
systems with complex frequency s. In the digital domain, we
denote signals with discrete time n and systems via complex
frequency z. To ease notation we use the same names for con-
tinuous time and discrete time variables, e.g., x(t) = x(nT ),
P (s) = L {p(t)} and P (z) = Z {p(n)} where z = esT .

The feedforward system utilizes an outward-facing micro-
phone Mref with subsequent analog digital conversion to sense
ambient sounds x(t). The resulting digital signal x(n) is
filtered by a digital filter W (z) to synthesize the digital control
signal y(n). By digital analog conversion with subsequent
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playback over the speaker, the system strives to realize a
defined transfer function H(s) = X(s)/E(s), i.e., a transfer
function from the outward-facing microphone Mref to the
inward-facing microphone Merr. An inward-facing micro-
phone is needed only for calibration purposes, however, it is
not required for operation of the system.

We characterize the analog system by acoustic transfer paths
which are assumed to be time-invariant. Specifically, the trans-
fer function from the outward-facing microphone Mref to the
inner microphone Merr is modeled via the primary path P (s)
and the transfer function from the loudspeaker to Merr via
the secondary path S(s). We assume that acoustic feedback
from the speaker to Mref is negligible because closed ANC
headphones usually exhibit a good passive insulation.

III. EQUALIZATION FILTER DESIGN

We aim to design a digital cascade filter W (z) which
comprises L SOS such that a transfer function H(s) from Mref

to Merr is realized. In other words, we are interested in
obtaining a coefficient vector

θ =
[
g bT

1 bT
2 aT

1 aT
2

]T ∈ R4L+1 (1)

which meets the defined design goal. In (1), g denotes a scaling
factor, b1 and b2 each contain L numerator coefficients and a1

and a2 each contain L denominator coefficients. Using this
notation, the filter response W (θ,Ω) becomes a function of θ
and the normalized frequency Ω ∈ [0, 2π), i.e.,

W (θ,Ω) = g ·
L∏
l=1

1 + b1le
−jΩ + b2le

−2jΩ

1 + a1le−jΩ + a2le−2jΩ
. (2)

Given W (θ,Ω) and a pair of paths P (Ω) and S(Ω), we
determine the achieved transfer path H̃(Ω) as

H̃(Ω) = P (Ω)− S(Ω)W (θ,Ω). (3)

The optimization target is to minimize the distance between
target response H(Ω) and achieved response H̃(Ω) where θ is
the optimization variable. We propose to minimize the squared
logarithmic power spectral density (PSD) distance

∆Φlog(θ,Ω) = Φhh,log(Ω)− Φh̃h̃,log(θ,Ω), (4)

with

Φhh,log(Ω) = 10 log10 |H(Ω)|2 (5a)

Φh̃h̃,log(θ,Ω) = 10 log10

∣∣∣H̃(θ,Ω)
∣∣∣2 , (5b)

which is related to the nonlinear loudness perception of the
human ear [9]. Note that the phase response of H(Ω) is not
considered in (4) because the human auditory system has a low
sensitivity towards moderate phase response changes [10].

Since the time-invariant approach cannot adjust to runtime
information, we utilize a training set I that reflects potential
wearing situations. Therefore, we consider a training set I
with I path pairs, which we distinguish using the path in-
dex i = 1, 2, . . . , I . We assume that the paths in I represent
the wearing situation accurately and without bias and strive for

optimal average case performance [3], [4]. Consequently, we
define a cost function C(θ) as the mean squared logarithmic
distance for I path pairs as

C(θ) =
1

2πI

I∑
i=1

∫ 2π

0

∆Φ2
i,log(θ,Ω) dΩ (6)

and refer to the optimal filter as global minimum of (6). For
filters of suitable order, solving ∇θ C(θ) = 0 for θ is not a
feasible approach as it leads to intricate terms. Instead, we aim
to minimize (6) iteratively using a numerical solver. For this
purpose we approximate the continuous integral by a discrete
sum over a frequency grid Ω containing K samples:

C̃(θ) =
1

IK

I∑
i=1

K∑
k=1

∆Φ2
i,log(θ,Ωk) (7)

Here, k = 1, 2, . . . , K is the frequency index and Ωk ∈ Ω.
The approximation is a form of numerical integration and vi-
able for a sufficiently dense Ω [11]. Note that an unconstrained
minimization of (7) does, in general, not lead to applicable
solutions. In the following, we discuss aspects that influence
the applicability of the obtained solution and show how these
can be impacted by means of constraints.

A. Filter Stability Constraints

An IIR filter allows to realize unstable poles, but such a filter
is not feasible. A minimization of (7) implies an inversion
of the generally non-minimum-phase secondary path S(z),
possibly making unstable poles favorable in terms of the cost.

To prevent filter instability, the well-known all-pass expan-
sion which mirrors unstable poles into the unit cycle could
be employed [10]. Since this approach alters the design-
critical phase response of the filter, we consider it to be
impractical and suggest to prevent the occurrence of unstable
poles through explicit constraints. We recall that an SOS
cascade filter is stable if and only if all denominator coefficient
pairs (a1l, a2l) lie within the stability triangle [12]. Since
the proximity of poles to the unit circle can be problematic,
e.g, due to numerical effects, we strive for a generalized
condition which allows for a user defined specification of the
maximum permitted pole radius |p|max, cf. [13]. This enables
the filter’s impulse response decay behavior to be controlled
explicitly. We formulate a corresponding linear inequality
constraint Aθ < b, where

A =

0

−1 −1
1 −1
0 1

⊗ IL
 , b = |p|2max · 1. (8)

Here, 0 is a zero-matrix of dimension 3L × 2L + 1, 1 is a
column vector containing 3L ones, IL is the identity matrix
of dimension L × L and ⊗ denotes the Kronecker product.
The resulting filter design problem is a nonlinear optimization
problem with linear inequality constraints:

minimize
θ

C̃(θ)

subject to Aθ < b
(9)
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B. Filter Magnitude Constraints

In the absence of restrictions, the magnitude response of
the filter can become arbitrarily large. This might impede
the applicability of the resulting filter, for example, if power
specifications of the transducers are exceeded. Furthermore,
a limitation for the amplification of frequency components
outside the audible spectrum might be useful in cases where
the filter is operated at a high sampling rate. To meet these
requirements, we extend (9) by a nonlinear constraint vec-
tor c(θ) which contains an entry

c(θ,Ωk) = |W (θ,Ωk)|2 −R(Ωk) (10)

for each frequency bin k. This facilitates the selective enforce-
ment of arbitrary magnitude limits R(Ω) ∈ R≥0. The extended
optimization problem reads

minimize
θ

C̃(θ)

subject to Aθ < b

c(θ) < 0.

(11)

For the sake of completeness, we point out that regularization-
based approaches can be used alternatively. These approaches
involve an extension of the cost function by further terms [14],
[15]. Consequently, the coefficients in the permitted range are
also affected, a manual weighting of the individual terms is re-
quired and adherence to hard constraints cannot be guaranteed
straightforwardly.

IV. THEORETICAL UPPER PERFORMANCE BOUND

When designing W (z), several effects prohibit a perfect
match to the design target H(Ω) simultaneously. To study
these effects in more detail, we explore a theoretical optimum
that can only be achieved in the absence of constraints imposed
by filter topology and order. For this we assume that W (Ω)
can be chosen independently for each frequency bin, i.e.,

θ =
(
r, ϕ
)T
, W (θ,Ωk) = rejϕ. (12)

In this case the global minimum of (7) can be found by
solving K two-dimensional optimization problems of the form

C̃k(r, ϕ) =
1

I

I∑
i=1

∆Φ2
i,log(r, ϕ). (13)

The result is a spectrum which leads to optimal performance
in terms of (7) for the wearing scenario reflected by I. The
optimal spectrum is likely not realizable using a causal and
stable filter with a finite number of coefficients. We note that
solving (9) can be understood as an attempt to do so.

The theoretical optimum is suited to investigate the impact
of transfer path variance individually. Furthermore, it provides
a reference to estimate the degree of optimality for filters that
strive for a minimization of (7). Performance loss resulting
from an approximation of the optimal spectrum by means of
a causal and stable filter can be studied separately. Since this
step depends on optimization hyperparameters such as filter
topology and order, it is beyond the scope of this paper.
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Fig. 2. Training set I containing I = 20 acoustic transfer path pairs.
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Fig. 3. Cost C̃ over iteration v for minimization of (11) for a custom
magnitude response target with two notches and one peak (cf. Fig. 4 bottom).

V. EVALUATION

We conduct a two-fold evaluation of the proposed method
wherein we consider simulations and real-time measurements.
For this purpose, we deployed a time-invariant AAE system
comprising L = 15 SOS on an Analog Devices ADAU1787
audio codec (fs = 192 kHz, 12.9µs processing latency [16]).
We used a Bose QC25 over-ear headphone without the man-
ufacturers ANC electronics and with a direct connection to
loudspeaker and microphone as an electro-acoustic front end.
All measurements were conducted in a measurement room
complying with the recommendation ITU-R BS.1116-2 [17]
using a Head Acoustics HMS II dummy head.

For the design of the filters, a training set I contain-
ing I = 20 path pairs was measured at a sampling frequency
of fs,meas = 48 kHz. To imitate a realistic normal fit wearing
scenario, we repositioned the headphones on the dummy
head after each measurement. Secondary paths were measured
according to [18] using a 10 second logarithmic sweep. To
measure the primary path while accounting for directional
dependencies, we synthesized a diffuse pink noise sound field
using 8 transducers equally distributed on the horizontal plane.
Figure 2 depicts the magnitude responses of the obtained
training set. For this experiment, we consider only normal fits.

A. Verification of the Average Case Performance

We evaluate the average case performance for three use-
cases: maximum wideband attenuation, a flat magnitude re-
sponse (hear-through) and a custom magnitude response target
with two notches and one peak. We minimized (11) for these
three cases using the training set, a frequency vector contain-
ing K = 2048 frequency samples within the audible range
(20 Hz ≤ f ≤ 20 kHz) and an SQP algorithm [8]. Usually, the
optimization terminates within few iterations, an example of
which is shown in Figure 3.
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Fig. 4. Averaged transfer path magnitude response Φh̃h̃,log for the use-cases
ANC (top), hear-through (middle) and a custom target (bottom). For reference,
the average passive attenuation is illustrated by a dashed line ( ) in the
upper plot. The transfer paths ( , ) are measurement results, whereas
the optimum ( ) is determined by simulation using the training set.

We evaluate the proposed method by measuring and sub-
sequently averaging I = 10 achieved transfer paths to ob-
tain Φh̃h̃,log(θ,Ω). We conduct the measurement as laid out in
Section V for all three cases and do not consider the training
set in the evaluation. We compare the proposed method to
the FIR Wiener solution [3], which was converted to a SOS
cascade filter (L = 15). Furthermore, we used the training
set data to estimate a theoretical upper performance bound as
discussed in Section IV.

The results of the real-time measurement are depicted in
Figure 4. They verify a distinct improvement over the con-
ventional method in terms of (7). We confirm that a simulated
decrease of C̃(θ) corresponds to real-world improvements
almost one-to-one. Furthermore, the proposed procedure yields
filters with an objective function value that is close to the
theoretical optimum. We point out that the conventional ap-
proach performs unfavorably for f > 10 kHz mainly because
the generalized cost function from [3] was used to reduce the
filter magnitude at high frequencies. This was necessary for
the conversion to SOS with adequate accuracy.

A more detailed view is given in Figure 5, where the
individual transfer path measurements that were used to obtain
the averaged paths shown in the lower plot in Figure 4 are de-
picted. There, it can be seen that deviations from the target are
also smaller for individual cases compared to the conventional
approach. Furthermore, we observe that inevitable deviations
caused by transfer path variance are distributed more evenly
around the target compared to the conventional method.
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Fig. 5. Target magnitude response ( ) and measured transfer path
magnitude responses Φh̃h̃,log ( / ) for the custom magnitude target.
Top: proposed method, bottom: conventional method.
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Fig. 6. Simulated and measured cost C̃ over maximum pole radius |p|max

for the hear-through use-case.

B. Pole Radius Influence

The achievable objective function value of (9) and (11)
depends on the imposed constraints. In the following, we in-
vestigate the extent to which the maximum pole radius |p|max

affects the achieved performance by repeating the experiment
conducted in Section V-A. For this experiment, several filters
with maximum pole radius |p|max ranging from 0.9 to 0.99999
are designed and compared. The energy-based effective im-
pulse response length of the filters according to [19] (99 %
energy decay) ranged from 105 to 219253 samples. We restrict
ourselves to the hear-through use-case and measure a second,
mutually exclusive validation set containing I = 10 paths
pairs. The resulting performance in terms of C̃ is compared to
a simulation using the training set and depicted in Figure 6.

In terms of C̃, we generally observe similar performance
regarding simulation and measurement. In both cases, a re-
laxation of the restrictions leads to better results but the
benefit decreases for |p|max → 1. Above |p|max = 0.999,
all measurements indicate similar performance whereas the
simulation-based performance increases slightly. This suggests
the existence of a threshold above which a further increase
in |p|max does not lead to increased real-world performance.
Possibly, the finite length of the acoustic path data contributes
to this effect.
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Fig. 7. Filter magnitude constraint influence for the ANC use-case: filter
magnitude responses (top) and simulated average active attenuation (bottom).
For f ≥ 24 kHz, no path data is available due to fs,meas = 48 kHz.

C. Magnitude Constraint Influence

In this section, we investigate the performance impact due
to magnitude limitation as presented in Section III-B. Since
the results of Sections V-A and V-B suggest a high correlation
between simulated and actual performance, we investigate im-
plications of the magnitude constraints based on a simulation
using the training set. We design three filters satisfying the
constraint function

R(Ω) =

{
∞, f < 4 kHz

γ2, f ≥ 4 kHz
(14)

for γ = {∞, −25 dB, −50 dB}. The cut-off was set to 4 kHz
because in Figure 4 (top) it can be seen that the system
achieves a negative active attenuation. This means that ambient
noise is amplified, which is not intended.

A simulation of the resulting average active attenuation is
depicted in Figure 7. In the frequency range 4 kHz - 10 kHz,
the active attenuation achieved by the filter without magnitude
restriction ( ) is also negative. It can be seen, however, that
magnitude limitation ( ) reduced this effect.

Within the remaining frequency range, the active attenu-
ation appears to be most affected in the “transition region”
(f ≈ 4 kHz) but is quite similar otherwise. We observe a
slight performance reduction for tighter constraints, even at
frequencies that are not explicitly constrained. For moderate
constraints, however, this effect appears to be marginal.

VI. CONCLUSION

In this contribution, we formulate the feedforward ANC
filter design problem for IIR filters in terms of a perceptually
motivated cost function. This approach leads to a nonlinear op-
timization problem, upon which we impose explicit constraints
in terms of stability and filter magnitude, thus providing a
flexible design framework. The resulting optimization problem
can be solved using iterative state of the art solvers.

We verify the performance of the presented method by
means of a real time measurement for three common use cases.
The measurements show a clear improvement over a state of
the art approach that was used as a reference. In addition, we
investigate performance implications caused by the constraints
via measurement and simulation. We extend the evaluation by
relating the results to a theoretical upper performance bound.
The real time measurements indicate a significant step towards
optimal performance.
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