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Abstract—This paper presents a new active noise control
(ANC) technique with online secondary path estimation and sub-
band adaptive filtering (SAF) for snoring reduction. In particular,
the combination with the SAF structure allows to obtain a better
estimation of the primary path and also has an impact on the
algorithm performance, especially in terms of convergence rate.
Although the SAF technique is applied only in the primary path
estimation, it improves also the performance of the secondary
path estimation guaranteeing a better convergence rate. The
proposed algorithm has been first validated using white noise
and then tested considering snoring signals. The experimental
results have confirmed its effectiveness in comparison with the
state of the art.

Index Terms—active noise control, subband adaptive filtering,
filters bank, snoring reduction

I. INTRODUCTION

The noise produced by snoring activity is a significant
problem in our society. This type of noise can reach a volume
of 90 dB and can cause several problems, such as loss of
productivity, reduction of attention and unsafely drive [1], [2].
Recently, several studies have highlighted the strong similarity
between the snoring activity and the vocal signal [3], [4].
In fact, the snoring signal is characterized by a fundamental
frequency followed by high order harmonics [4], like the vocal
signal. The snoring activity could be divided into two phases:
inspiration and expiration. Considering the snoring spectrum,
the most of the power is located at lower frequencies. In
particular, between 100 Hz and 200 Hz during the inspiration
and between 200 Hz and 300 Hz during the expiration. Hence,
the fundamental frequency to be eliminated resides between
100 Hz and 300 Hz. The literature offers several solutions
for snoring attenuation. Passive systems involves the use of
devices such as earplugs or special pillow [5]. However,
these techniques could be very annoying for the user and
they have no effect at low frequencies. Instead, active noise

control (ANC) systems are capable of attenuating the low
frequency noise where passive techniques are too expensive
and, in most case, ineffective. ANC systems must be adaptive
in order to follow the variations of the acoustic path. For
this reason, adaptive filters are used for ANC algorithms and
can be designed in different ways and, in case of ANC, one
of the most used is the least mean square (LMS) algorithm.
The secondary source, that reproduces the “antinoise” signal,
introduces a secondary path between the control source and
the error microphone which has to be evaluated. In particular,
the ANC system is usually built on filtered-x least mean square
(FxLMS) [6] algorithm. In particular, an ANC system based
on FxLMS is applied for snoring reduction in [7], [8]. Figure
1 shows a block diagram of a simple ANC system based on
FxLMS algorithm, in which x(n) represents the primary noise,
s(n) is the impulse response of the secondary path and w(n) is
the filter to be adapted with an LMS algorithm, controlling the
residual noise e(n) captured by the error microphone. In most
cases, the secondary path could change due to environmental
conditions or loudspeakers and microphones damage, so it
too is time varying. Hence, the FxLMS algorithm can be
improved with the introduction of online estimation of s(n).
In the literature, two different approaches for online secondary
path modeling can be found. The first approach consists of
the injection of additional random noise v(n) into the ANC
system [9], while the second method avoids the noise injection
by modeling s(n) from the output y(n) [10]. A comparison of
these two approaches is analyzed in [11], concluding that the
first method is better than the second in terms of convergence
rate, speed of response to variations of the primary noise,
updating duration and computational cost. For this reason,
only systems based on additional random noise injection are
considered below. The first who proposed an online estimation
of the secondary path with random noise injection is Eriksson
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Fig. 1. Scheme of a simple ANC system based on FxLMS.

in [9]. This method introduces another adaptive filter to model
s(n) at the same time of ANC system using a white noise
uncorrelated with the primary noise x(n). The additional noise
introduces a perturbation on the secondary path update that
could degrade the convergence rate. In order to reduce this
undesirable interference, two methods are proposed by Bao
et al. in [12] and Kuo et al. in [13]. The method proposed
in [12] uses another adaptive filter to cancel the interference
caused by the additional noise, improving the convergence
rate of the second path modeling. However, the additional
noise v(n) affects the convergence on the adaptation of the
added filter. Differently, in [13] an adaptive prediction error
filter is involved to attenuate the interference introduced by the
additional noise. However, both in [12] and in [13] the effect
of perturbation introduced by the additional noise v(n) on the
filter w(n) is not investigated. This problem has been analyzed
and solved in [14], using three cross-updated adaptive filters.

In this paper, the algorithm presented in [14] has been
modified in order to improve the performance of a snoring
cancellation system. In particular, the adaptive system of the
primary path has been enhanced introducing the delayless
subband algorithm proposed by [15] in order to improve the
performance of primary estimation in terms of convergence
rate and error of the adaptive filters. In fact, the algorithm
of [14] is called cross-update adaptive filter due to the de-
pendence of each filter and an improvement of the primary
adaptive filter enhances the whole algorithm.

The paper is organized as follows. Section II describes
the proposed algorithm. Section III shows the experimental
results. Finally, in Section IV conclusions and future works
are discussed.

II. PROPOSED ALGORITHM

The scheme of the proposed algorithm is shown in Figure
2. The proposed system is based on the approach presented
in [14] for the primary path estimation, modifying it with the
introduction of a delayless subband approach [15], that allows
to improve the performances of the entire ANC system.

A. ANC with online secondary path estimation

The secondary path estimation aims at improving the per-
formance of previous state-of-the-art algorithms eliminating
the perturbation introduced by the additional noise used to

adapt the secondary path. The scheme of algorithm is based
on FxNLMS where the input signal x(n) is filtered by the
estimation of secondary path ŝ(n) to delete the contribute
of secondary path and the weights adaptation is normalized
against the power of input signal. As said above, the secondary
path estimation is based on the injection of additional uncor-
related noise to the output of ANC controller and this noise
represents a perturbation for the estimation of the primary
path. To solve this problem, the approach of [14] calculates the
signal error for the primary path estimation e′(n) as follows:

e′(n) = e(n)− ŝ(n) ∗ v(n), (1)

where v(n) is the injected uncorrelated noise, ŝ(n) is the
estimation of secondary path and e(n) is calculated as:

e(n) = d(n)− s(n) ∗ y(n) + s(n) ∗ v(n), (2)

where d(n) is the desired signal, y(n) is the output of the
ANC controller and s(n) is the real secondary path. In the
ideal case, when ŝ(n) = s(n), the error becomes e′(n) =
d(n)−s(n)∗y(n) and the perturbation caused by the additional
noise is removed. The error e′(n) is used in the main adaptive
filter as error signal for w(n) and as desired signal for the
additional adaptive filter h(n). In fact, these filters have the
following updating equations:

w(n+ 1) = w(n) + µwx
′(n)e′(n), (3)

h(n+ 1) = h(n) + µhx(n)[e′(n)− z(n)], (4)

where z(n) = h(n) ∗ x(n) is the output of filter h(n),
x(n) is the noise signal, x′(n) is the noise signal filtered
with secondary path and µw and µh are the step size of the
filters w(n) and h(n), respectively. The update equation of the
secondary path estimation uses v(n) as input signal and es(n)
as error signal, as follows:

ŝ(n+ 1) = ŝ(n) + µsv(n)es(n), (5)

where µs is the step size of the filter ŝ(n) and es(n) is
computed as follows:

es(n) = g(n)− û(n), (6)

where g(n) = e(n)− z(n) and û(n) is noise injected filtered
by ŝ(n).

B. Subband adaptive filtering

The proposed system introduces a subband adaptive filtering
(SAF) structure in the primary path estimation. Due to the de-
pendence of each adaptive filter to other filters, the application
of a delayless subband algorithm improves the convergence
rate not only of the ANC controller but improves the whole
system. In fact, the updates of the three adaptive filters are
dependent on each other. The delayless subband adaptive filter
algorithm is implemented as proposed in [15], as shown in
Figure 2. The signal x′(n), that is the input x(n) filtered
by ŝ(n), and the error e′(n), obtained by the Equation (1),
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Fig. 2. Scheme of the proposed ANC system with secondary path modelling and delayless subband algorithm.

are decomposed in subband by the analysis filter-bank H(z),
described as follows:

H(z) = [H0(z), H1(z), ...,HM−1(z)]T , (7)

where Hk(z) is the transfer function of the k-th analysis
bandpass filter of length L = 512, with k = 0, ...,M − 1
and M the number of subbands. The weights of the k-th
subband wSAF

k (n) are calculated using the following adaptive
algorithm:

wSAF
k (n+ 1) = wSAF

k (n) + µw
x′∗k (n)e′k(n)

α+ ||x′k(n)||2
, (8)

where ∗ denotes the complex conjugation, µw the step size, α
is a small number to avoid division by zero, x′k(n) is the input
signal for the k-th subband and e′k(n) is the error of the k-th
subband. To calculate the fullband filter W (z), all the subband
weights have to be stacked by executing the following steps:
• the subband weights are transformed by (N/D)-point

FFT, where N is the length of the fullband filter and
D = M/2 the decimation factor;

• the complex samples of FFT are stacked to form the first
half of the array of the fullband filter;

• to complete the array, the central point is set to zero and
the first half is complex conjugate and reverse in order
to fill the second half of array;

• the fullband filter is calculated by a N -point IFFT of the
array.

The application of subband adaptive filtering (SAF) improves
the performance of the whole algorithm as shown in the next
section.

III. EXPERIMENTAL RESULTS

Some experiments have been carried out to evaluate the
performance of the proposed algorithm. MATLAB has been
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Fig. 3. Comparison between (a) primary path measured, (b) the weights
of adaptive filter of reference and (c) the weights of the proposed adaptive
filter for the primary path estimation. In time above and frequency below,
considering white noise as input.
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Fig. 4. Comparison between (a) secondary path measured, (b) the weights
of adaptive filter of reference and (c) the weights of the proposed adaptive
filter for the secondary path estimation. In time above and frequency below,
considering white noise as input.
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used to implement the algorithm and to compare it with
the reference approach of [14]. The simulations have been
conducted with broadband noise to evaluate the proposed
method in the worst scenario. The primary path and the
secondary path are measured from the setup of [8] inside a
semi anechoic chamber and they are modeled as FIR filters of
length N = 256 taps. The experimental tests have been carried
out first with white noise and then considering a snoring signal
as input, evaluating:

• the estimation of primary path;
• the estimation of secondary path;
• the convergence rate of the primary path;
• the convergence rate of the secondary path;
• the residual error after cancellation.

In particular, the convergence rate of the primary path has been
evaluated the error calculated as follows:

∆we(n) =
||w(n)− p(n)||
||p(n)||

, (9)

where w(n) represents the weights of the adaptive algorithm
and p(n) is the impulse response of the primary path. For both
algorithms the length of the filters are 512 taps for w(n) and
256 taps for the adaptive filter of secondary path ŝ(n) and for
h(n). For the delayless algorithm, a prototype filter length of
L = 512 has been considered for white noise and a length of
L = 256 for snoring noise.

A. Results on white noise

The proposed algorithm has been first validated considering
white noise as input. A large number of simulations have been
realized to find the optimal values of step size for adaptive
algorithms. In particular, for the reference algorithm the op-
timal values for the step size are the following: µw = 0.002,
µs = 0.002, µh = 0.001 and for the proposed algorithm
are: µw = 0.008, µs = 0.004, µh = 0.001. For the SAF
structure, a number of subband of M = 128 has been chosen.
In Figure 3, the time and frequency responses of the primary
path compared to the weights of the adaptive filters of the
proposed and of the reference algorithms are shown. The
proposed approach fits perfectly the impulse response, while
the reference approach has some difference in low frequency
range, in particular below 200 Hz. At high frequency both
approaches do not have problems to adapt the primary path.
The better response of the proposed approach is due to the
usage of subband decomposition. In fact, in each subband the
signal has a narrower bandwidth than the original fullband
signal and this algorithm improves the performance of the
adaptive filter. Also the convergence rate is improved, as
shown in Figure 7(i), where the displayed error ∆we(n)
is calculated following the Equation (9). The comparison
between the measured secondary path and the weights of the
adaptive filter of the proposed and reference algorithms is
shown in Figure 4. In this case, the reference and the proposed
algorithms have a frequency response that fits perfectly with
the secondary path. In fact, both the algorithms have a good

0 50 100 150 200 250

Samples

-0.5

0

0.5

1

A
m

p
lit

u
d
e a b c

100 101 102 103 104

Frequency

-40

-30

-20

-10

0

M
a
g
n
it
u
d
e a b c

Fig. 5. Comparison between (a) primary path measured, (b) the weights
of adaptive filter of reference and (c) the weights of the proposed adaptive
filter for the primary path estimation. In time above and frequency below,
considering snoring noise as input.
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Fig. 6. Comparison between (a) secondary path measured, (b) the weights
of adaptive filter of reference and (c) the weights of the proposed adaptive
filter for the secondary path estimation. In time above and frequency below,
considering snoring noise as input.

performance in terms of adaptation. Considering the conver-
gence rate, the proposed algorithm has better performances, as
shown in Figure 7(ii), where the signal error es(n), defined by
Equation (6), is reported. In this case, the better convergence
is a side effect of the application of SAF in the primary path
due to the dependence of secondary estimation with the main
part of the algorithm. In the Figure 7(iii), the noise cancelling
performance is compared reporting the residual noise e(n).
The residual noise of both algorithms are the same and this is
due to the injection noise, however the proposed approach has
a better performance in terms of convergence rate as result of
the application of SAF technique.

B. Results on snoring noise

After the validation with white noise, the proposed algo-
rithm has been tested considering the snoring noise as input.
The snoring signal has been downloaded from [16]. Also in
this case, several simulations have been achieved to find the
optimal values of step size. For the reference algorithm the
found values are the following: µw = 0.003, µs = 0.0013,
µh = 0.001 and for the proposed algorithm are: µw = 0.014,
µs = 0.001, µh = 0.001. For the SAF structure, a number
of subband of M = 64 has been selected. Considering the
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Fig. 7. Comparison between (a) the reference algorithm of [14] and (b) the proposed algorithm, evaluating (i) the relative error of the primary path estimation,
(ii) the error of the secondary path estimation and (iii) the MSE in relation to the input signal x(n), considering white noise as input.
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Fig. 8. Comparison between (a) the reference algorithm of [14] and (b) the proposed algorithm, evaluating (i) the relative error of the primary path estimation,
(ii) the error of the secondary path estimation and (iii) the MSE in relation to the input signal x(n), considering snoring signal as input.

primary path estimation, both algorithms reconstruct perfectly
the time and frequency responses, as shown in Figure 5.
However, evaluating the convergence rate of the primary path,
the proposed algorithm exhibits a significant improvement, as
shown in Figure 8(i), where the error ∆we(n), calculated
by Equation (9) is reported. Regarding the secondary path
estimation, the proposed algorithm fits better the time and
frequency responses, as shown in Figure 6. Also the con-
vergence rate of the secondary path is greatly improved with
the proposed algorithm, as reported on Figure 8(ii), where
the error es(n), defined by Equation (6), is displayed. Finally,
Figure 8(iii) shows the residual noise e(n), compared with the
input snoring noise. The proposed algorithm reaches a residual
noise about 10 dB lower than the reference approach, with a
better convergence rate.

IV. CONCLUSION

In this paper, an innovative active noise control algorithm
with online secondary path modeling that includes a subband
adaptive filtering method is presented and applied for snoring
noise reduction. The proposed technique has been compared
with an existing state-of-the-art approach through experimental
tests. The experimental results have shown better performances
of the proposed system in terms of convergence rate and path
estimation, especially at the low frequencies and when snoring
noise is considered. Future works will be focused on real-
time implementation and testing of the proposed algorithm
exploiting a DSP platform.
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