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Abstract—This paper describes an approach to separate time-
overlapping bird vocalizations in 4-channel recordings and over-
come the limitations of classical beamforming. As a first step,
the short-time-Fourier transform (STFT) of the input time series
is computed. The beam response is calculated for each time-
frequency (TF) bin by conventional beamforming with amplitude-
based sidelobe suppression and then converted into a red-green-
blue (RGB) color vector, producing the directional spectrogram
(D-SPEC) in which color represents direction of arrival (DOA).
The scalar color value (hue) is then clustered into bird individuals
using a probabilistic approach (Gaussian mixture model). In a
final step, spatial processing is used to promote grouping of
nearby TF bins into the same cluster. Results are tested using
annotated field recordings in a challenging scenario.

I. BACKGROUND AND MOTIVATION

Automated survey methods are popular to study a wide

spectrum of research questions in ecology, ethology, and

conservation science, and are rapidly gaining importance

for documenting and understanding the impacts of ongoing

environmental change on biodiversity [1], [2]. Among the

most widely used methods is passive acoustic monitoring,

which allows for low-impact continuous observation of sound-

producing animal species such as insects, anurans, birds, and

mammals [3] and facilitates the automated identification of

their sound signals, even in complex acoustic environments

[4]. A specialized application of passive acoustic monitoring

is the localization of terrestrial wildlife, which has been

used for different purposes in studies on animal behavior

and ecology [5]. Here we describe an approach to separate

simultaneous bird vocalizations into directional spectrograms,

ideally containing only the signals of single individuals, and

to estimate their direction of arrival (DOA). The sound source

separation method is based on short (10-20 sec.) 4-channel

audio recordings that are gathered by small cable-synchronized

microphone arrays connected to an autonomous recording unit

(ARU). The birds are assumed stationary during the recording.

Our aim is to show that the method produces robust DOA

estimates even with compact microphone arrays and that it

has the potential to support species’ abundance estimation
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in realistic scenarios. We briefly explain the experimental

setup and provide the algorithms needed to derive DOA es-

timates and directional spectrograms (D-SPEC). Furthermore,

we validate our DOA bearings using time-difference-of-arrival

(TDOA) calculations. Finally, we discuss some advantages of

the approach and present ideas for further improvements.

II. EXPERIMENTAL APPROACH AND ARRAY

SPECIFICATION

The field study was conducted in a floodplain area within the

Lower Oder Valley National Park (Brandenburg, Germany).

We used four autonomous recording units (ARUs), each con-

sisting of a TASCAM DR-680 portable multi-track recorder

and four Beyerdynamic condenser microphones. At a height

of 1.5 m, the microphones were mounted under a 40 × 40
cm PVC plate and arranged in a 27 × 27 cm square (cf.

Fig. 1. in [6]). Each microphone had a cardioid response

pattern with the zero (null) directed at the array center (Fig.

1). The microphones were directed at 45, 135, 225, and 315

degrees using a precision compass. The ARUs were placed

with distances between units of 52.2 to 118.3 m. We ensured

that the altitude above the ground and geographic orientation

were exactly the same for all ARUs. The recordings were made

in the night from April 24-25, 2015, at 48 kHz sample rate and

16 bit data depth, but down-sampled to 24 kHz for processing.
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Fig. 1. The microphone array used in each ARU.

III. DIRECTIONAL SPECTROGRAM (D-SPEC)

A. Beamforming

The resolution afforded by classical beamforming, or even

adaptive beamforming using such a small array would be un-
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able to separate most overlapping bird vocalizations. However,

to efficiently communicate in noisy environments territorial

birds tend to avoid interference using spatial, temporal, or

acoustic partitioning of vocalizations [7], [8]. This means that

simultaneous overlap in time and frequency occurs only rarely.

To take advantage of this, data is first processed by short-

time Fourier transform (STFT) and then beamforming is done

independently on each time-frequency (TF) bin, in which it is

assumed that just one source is present. For a signal originating

at a distant point at a given direction, frequency-domain beam-

forming [9] calculates the inner product between the array

signal at one TF bin (which in this case is a 4-dimensional

complex vector) with the idealized output including cardioid

microphone pattern. We used a directional resolution of 3

degrees, resulting in 120 steering directions. For a length N
FFT, there are n = N/2 + 1 frequency bins, producing a

complex beamformer output of size n× T × 120, where T is

the number of time steps.

To get an idea of the difficulty of beamforming with only

4 microphones, refer to Figure 2. An intensity plot of the

STFT amplitude is shown for a segment exhibiting a loud

chirp which was known to originate from an angle of 330

degrees (Inset A). Seven test points along the trajectory of the

chirp were manually selected, approximately evenly spaced

in frequency, and the beam response was calculated at each

test point. In Inset B, the seven beam responses are calculated

without consideration of the microphone cardioid response.

The responses show many sidelobes at various angles, with no

correspondence except at the true location, where they all reach

a peak. In Inset C, the microphone response is included and

the correct location of 330 degrees becomes more apparent,

demonstrating the importance of including the cardioid pattern

in the steering vector. Finally, in Inset D, the beam responses

are processed by the sidelobe suppression explained below.

B. Sidelobe Suppression

Let bk,i, 1 ≤ k ≤ n, 1 ≤ i ≤ m be the beamformer

amplitude at frequency bin k and direction i, where there

are m = 120 directions. Let b̃k,i =
bp
k,i∑

m
j=1

bp
k,j

and ak =
(

∑m
i=1 b̃

p
k,i

)1/p

. Quantity b̃k,i is the sidelobe-suppressed

beam pattern, whereas ak is the amplitude estimate for fre-

quency k (computed using p-norm). A power of p = 16
was used. This type of sidelobe suppression relies on the

assumption that just one source is present in each TF bin. All

of these quantities are calculated for each of the T time steps,

but the time index is not shown for simplicity of notation.

C. Color Determination

To convert the length-m sidelobe-suppressed beam ampli-

tude response at each time-frequency bin into a color, we

multiply it by a 3×m RGB (red-green-blue) color map matrix,

in which the colors vary cyclically in the 360-degree range1.

The resulting D-SPEC is an array of size T ×n× 3 (Fig. 3).

1This type of color map is commonly known as HSV because the hue varies
linearly and cyclically.

Fig. 2. (A) Intensity plot of the STFT of a loud chirp originating from an
angle of 330 deg and beam-patterns computed at seven test points, (B) without
and (C) with cardioid pattern, and (D) with sidelobe suppression.
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Fig. 3. Left: D-SPEC example, Right: Color key (degrees azimuth). Compare
with original 4-channel spectrograms in Figure 7.

IV. CLUSTERING

To the human eye, vocalizations from at least 4 birds are

visible in Figure 3. Automatic separation requires clustering.

Before clustering, information is gathered from the D-SPEC

including C(t, k, l) which is the T × n × 3 D-SPEC itself,

{at,k} which are the spectrogram amplitudes (time index t is

now included), and {zt,k} which is the matrix of hue values.

The hue is obtained by converting the 3-dimensional RGB

value at a TF bin to HSV. The hue (first element) is a value

between 0 and 1 that represents the range 0 to 360 degrees.

Both {at,k} and {zt,k} are T×n matrices. This data is reduced

significantly by keeping only bins where {at,k} is above an

empirically-defined threshold. The TF bin locations of the

threshold crossings are denoted by ti and ki, where i ranges

from 1 to Ns, which is the number of threshold crossings.

The hue values are {zi}
∆

= {zti,ki
}, and the amplitudes are

ai
∆

= ati,ki
. A histogram of hue values is shown in Figure 4

for a typical field recording of 10 seconds.

Fig. 4. Example histogram of hue values. Lines are drawn in a color
corresponding to the average hue in nearest cluster.

A. Initialization

An initial clustering of the hue values {zi} is accomplished

with K-means [10] using a high initial number of clusters (for

example M = 9). The cluster count M is reduced in a later

step where similar clusters are merged.

Let W = {Wi,j} be the Ns ×M cluster probability matrix

where Wi,j = P (j|i) is the probability that sample i belongs
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to cluster j. Initially, these values are equal to one or zero

according to the cluster membership determined by the initial

K-means clustering. Recall that index i ranges over the Ns

STFT bins that have exceeded a threshold and can point to

any time or frequency location.

To improve upon the K-means clustering, a statistical ap-

proach is used to represent the distribution of hues in each

cluster by a C-component Gaussian mixture model (GMM).

The GMM probability density for the hue value z of cluster j is

equal to gj(z) =
∑C

c=1 αj,c (2πσ2
j,c)

−1/2 exp
{

−
[z−µj,c]

2

1

2σ2

j,c

}

,

where αj,c, µj,c, σ2
j,c are the weight, mean, and variance

parameters for cluster j, component c, and where [ ]1 is the

modulo-1 operator that results in a signed hue value in the

range [−.5, .5]. Signed modulo-1 arithmetic is needed for

comparing hue values. For example, [0.95 − 0.05]1 = −0.1.

We used C = 2 components. Parameter σ2
j,c takes an initial

value of 0.1, while µj,c can be set to randomly-determined

values, for example by choosing C randomly-selected hue

values from cluster j. Weights αj,c are initialized to 1/C.

The complete collection of clustering parameters are given

by Θ =
[

{Wi,j}, {αj,c, }, {µj,c, }, {σ
2
j,c}
]

, with i ∈ [1, Ns],
j ∈ [1,M ], c ∈ [1, C].

B. GMM Estimation

To complete the statistical clustering, it is necessary to

estimate the GMM using an iterative expectation-maximization

(E-M) algorithm [11]. The GMM estimation iteration begins

by calculating the hue log-likelihood matrix Li,j,c, which is

the Ns ×M × C matrix

Li,j,c = −
1

2
log(2πσ2

j,c)−
[zi − µj,c]

2
1

2σ2
j,c

. (1)

From {Li,j,c}, the component membership probabilities are

estimated for each sample i as P̂ (c|i, j) =
αj,c exp(Li,j,c)

gj(zi)
,

where gj(zi) =
∑C

c=1 αj,c exp(Li,j,c). In the next step, the

cluster membership probabilities are estimated as

P̂ (j|i) =
Wi,j gj(zi)

∑M
j′=1 Wi,j′ gj′(zi)

. (2)

This is the E-step of the E-M algorithm. Next, in the M-step,

the GMM component probabilities are re-estimated:

αj,c = P (c|j) =

∑Ns

i=1 a
q
i P̂ (j|i) P̂ (c|i, j)

∑C
c′=1

∑Ns

i=1 a
q
i P̂ (j|i) P̂ (c′|i, j)

, (3)

where q is an exponent parameter that determines how much

amplitude affects the estimation. We used a value of q = 0.5.

Next, the cluster weights are estimated

P (j) =

∑Ns

i=1 a
q
i P̂ (j|i)

∑M
j′=1

∑Ns

i=1 a
q
i P̂ (j′|i)

, (4)

and, the GMM parameters are updated using

δµj,c =

∑Ns

i=1 a
q
i P̂ (j|i) P̂ (c|i, j)[zi − µj,c]1

∑Ns

i=1 a
q
i P̂ (j|i) P̂ (c|i, j)

, (5)

which is the estimated change in µj,c. The updated values of

µj,c are µj,c := µj,c+δµj,c, 1 ≤ j ≤ M, 1 ≤ c ≤ C. Finally,

the variances are updated:

σ2
j,c =

∑Ns

i=1 a
q
i P̂ (j|i) P̂ (c|i, j)[zi − µj,c]

2
1

∑Ns

i=1 a
q
i P̂ (j|i) P̂ (c|i, j)

+ σ2
0 , (6)

where σ2
0 is added to prevent variance tending to zero. We

used σ2
0 := 0.00015. The sample-wise cluster-probabilities are

set equal to the estimates:

Wi,j = P̂ (j|i), 1 ≤ i ≤ Ns, 1 ≤ j ≤ M. (7)

The algorithm then loops back to compute hue log-likelihoods

(eq. 1). Typically, about 100 GMM updates are executed.

Every 10 iterations or so, the algorithm seeks to reduce the

number of clusters by cluster-merging (Section IV-C).

C. Cluster Merging

In cluster merging, a measure of similarity between clusters

is computed: Sj,k =
∑C

c=1 αj,cgk(µj,c), where Sj,k estimates

the probability that data from cluster j could be a member

of cluster k by treating the GMM component means µj,c as

potential data samples from cluster j occurring with proba-

bility P (c|j). Before applying to a threshold, we normalize it

and take the log: S̃j,k = log
(

Sj,k

maxj′ Sj′,k

)

. If S̃j,k is above a

threshold (we used -0.15), then the weakest of the two clusters,

i.e. with lower weight P (j), is eliminated so that its members

will likely belong to the stronger cluster on the next iteration.

All cluster pairs are tested.

D. Spatial Processing

So far, cluster membership probability is based only on the

hue of the sample (2). Now, we include information about

the likely cluster membership of neighboring TF bins. Let Ni

be the set of neighbors of sample i (not including sample

i itself). A sample i′ is a neighbor if the squared distance

d2(i, i′) = (ti − ti′)
2 + (ki − ki′)

2 is less than the square of

the neighborhood radius. A radius of about 6 to 10 is used,

which is measured in pixels (i.e. TF bins), with time and fre-

quency dimensions treated the same. A neighborhood weight-

ing function is defined as η(i, i′) = exp(−d2(i, i′)). In spatial

iterations, the hue-based sample-wise cluster probabilities (2)

are replaced by spatial sample-wise cluster probabilities

Ps(j|i) =

(

∑

i′∈Ni
η(i, i′)P γ(j|i′)

∑M
j′=1

∑

i′∈Ni
η(i, i′)P γ(j′|i′)

)

· P (j|i), (8)

where parameter γ determines the amount of spatial influence.

We used γ = 30. In a spatial-processing iteration, Wi,j is

updated to equal Ps(j|i), after it has been normalized so that

it sums to 1 over j. This repeats about 5 times. The GMM

hue model is not changed.

Figure 5 provides an example of spatial processing starting

with (left) a cropped section of the original D-SPEC (Fig. 3)

and continuing with (center) an artificial state map created

from matrix W in which the cluster identity of each TF bin

(argmax over cluster) is shown in a different color. In the area
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between 3.2 and 3.4 seconds (left), the reverberation of the

call from one Spotted Crake (blue) overlaps with the call of a

Mallard (yellow/green). Pixels in this area are assigned to three

or four different clusters. On the right, the artificial state map

of the same area is shown after spatial processing, resulting

in more consistent spatial distribution of cluster identities.

Fig. 5. Example of spatial processing. Left: original D-SPEC. Center: cluster-
identity map prior to spatial processing. Right: after spatial processing.

V. EXAMPLE OF SOURCE SEPARATION

Cluster-specific spectrograms are created by multiplying D-

SPEC RGB values by the corresponding column of the cluster

probability matrix W after clustering is finished. This results

in spectrograms that are ideally associated with one individual

(Fig. 6). Information about the clusters in Figure 6 is tabulated

in Table I. The angle shown for each cluster is the mean cluster

azimuth, calculated by taking the weighted mean of the hue

values in the cluster, then converting to angle.

Fig. 6. Example of source separation for the 8 second recording at one ARU,
also seen in Figures 3 and 7. Additional details are given in Table I.

Cluster Species Angle Weight

A Spotted Crake (Porzana porzana) 221.3 56.0%
B Mallard (Anas platyrhynchos) 79.5 18.0%
C Spotted Crake (Porzana porzana) 292.1 12.0%
D European Tree Frog (Hyla arborea) 188.0 7.0%
E Spotted Crake (Porzana porzana) 256.4 4.0%

TABLE I
ANNOTATION AND CLUSTER DETAILS FOR FIGURE 6.

A. Creation of Cluster Time Series

It is a well-known approach to re-create time series from the

STFT by “overlap-add”. Since the cluster probability estimates

{Wi,j} correspond to a STFT time-frequency bin that has

exceeded the initial threshold, it is possible to multiply the

STFT by the entries in matrix W, a kind of individual-specific

mask, prior to re-creation of the time series. This will produce

cluster-specific time series. Naturally, all STFT bins that do

not exceed the threshold will not be used in the re-synthesis.

VI. VALIDATION

To validate the source separation, we compared the D-SPEC

clusters (Fig. 6) with manually annotated spectrograms of the

original 4-channel recordings (Fig. 7). The correspondence

between the individuals in the figures, in the form “annotation

from Fig. 7” = “cluster from Fig. 6” is as follows: P1=A,

mall=B, P3=C, P2=E. Parts of individual P4 may be seen in

cluster D and the European Tree Frogs, which dominate cluster

D were not annotated. Apart from that, the other clusters

were correctly assigned to individuals. To validate the angu-

lar measurements based on D-SPEC clusters, we separately

estimated the direction of the dominant individual (Fig. 6,

cluster A) using three different ARUs and the built-in TDOA-

function of Avisoft SASLab Pro software, and compared them

with the D-SPEC angles. Only the two microphone channels

with highest amplitudes were used for DOA estimation, as it

was clear that the signals arrived from that side of the array.

We calculated the DOA from TDOA estimates using basic

geometry and assuming a plane wave front. Measurements

were made separately in six consecutive 10-second intervals

and are summarized in Table II, which shows the mean and

standard deviation of the angles reported by the two methods

(TDOA and D-SPEC) in the six intervals. Note that the TDOA-

based measurement is very stable, showing no variations over

the six intervals. Angles reported by D-SPEC are based on

weighted average of all the TF pixels assigned to a cluster and

can include reverberation and sometimes other individuals at

the same direction. Despite this, there is very good agreement.

ARU TDOA D-SPEC Diff

Mean (deg) Stdev Mean (deg) Stdev

I 224.9 0 226.8 2.4 1.9

II 117.1 0 119.5 5.6 2.4

III 149.6 0 153.8 4.6 4.2

TABLE II
STATISTICAL SUMMARY OF TDOA-BASED AND D-SPEC ANGULAR

MEASUREMENTS FOR THE DOMINANT INDIVIDUAL AT THREE ARUS.

VII. DISCUSSION

In bioacoustic research, microphone arrays have been

widely used for tasks related to localization and tracking

of animals [5]. Our approach has shown that even an array

consisting of only four microphones can be used to reliably

separate the voices of individual birds. Although more research

is needed for the practical application of this method, its

potential for biodiversity studies is obvious. With our method

169



Fig. 7. Annotation of original 4-channel field recording. Each spectrogram is made from one microphone. Direction can be guessed by comparing the
amplitudes across microphones.

we were able to separate at least 5 animals based on calling

direction. The method also allows the reliable assignment of

individual calls to a sequence, even if these are superimposed

by other sounds.

Although our microphone arrangement was not optimal for

beamforming-based direction determination, the DOA could

be estimated with high accuracy. The 4-microphone array in

our study was originally designed for classical localization

using TDOA estimates [6], and therefore had a larger inter-

microphone spacing (Fig. 1). Spotted Crake calls have a

peak frequency of 2.5 kHz, meaning that DOA estimation by

beamforming alone would be extremely difficult, due to strong

sidelobes (Fig. 2B). Sidelobes could be avoided by matching

the microphone spacing to the wavelength of the signal, but

this would result in a very wide beam and lower localization

sharpness [12]. Despite wide beams and high sidelobes, our

approach of TF bin clustering using sidelobe suppression (Fig.

2D), which exploits the assumption of only one source present

at a bin, allows DOA estimates to be made at individual bins

with fine resolution. By averaging over the large number of

DOA estimates (i.e. color) in a cluster, and applying spatial

smoothing (Fig. 5), a robust DOA estimate is achieved. Our

microphone array design also allows good independent angular

validation by means of acoustic triangulation. In addition, the

directional spectrograms (Figs. 3 and 6A-E) may lead to tools

for signal annotation and automated species identification.

VIII. CONCLUSIONS

We anticipate that the sound source separation approach

presented here, opens new opportunities for applications in

the field of automated biodiversity monitoring, specifically for

abundance estimation of a wide spectrum of sound-producing

animals. Additional field work could reveal the most appro-

priate array construction, regarding the number, spacing, and

geometrical arrangement of the microphones. A crucial prereq-

uisite for widespread and permanent use under field conditions

would be, however, the availability of weatherproof cardioid

microphones, making sound-wave-deflecting constructions for

rain protection superfluous. Weatherproof microphones would

also facilitate 3D DOA estimation with arrays of 4 or more

microphones mounted in tetragonal or similar arrangements

[13], [14].
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