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Abstract—This work aims at introducing a new acoustic
echo cancellation algorithm robust to double-talk situation. We
propose a method which combines partition-block frequency
domain adaptive filtering (PBFDAF) and best linear unbiased
estimation (BLUE) through local signal characteristics recursive
estimation. We report that our method outperforms an Acoustic
Echo Cancellation (AEC) baseline using BLUE for Echo Return
Loss Enhancement (ERLE) and show its usefulness when used in
an automated speech recognition pipeline. Improvements are ob-
tained for situations featuring either continuous or discontinuous
echo signals.

Index Terms—Acoustic Echo Cancellation, Double-Talk, BLUE

I. INTRODUCTION

The increasing demand for hands-free telephony and more
recently the wide use of teleconferencing systems motivated
the long standing interest for the acoustic echo cancellation
(AEC) problem. In a classical AEC scenario (fig. 1), a ref-
erence signal x(t) is reproduced in a room. In this room a
microphone aims at recording a local signal s(t). An acoustic
path w(t) exists between the microphone and the sound
reproduction system such that the microphone not only records
the local signal but also an undesired echo d(t) originating
from the reference signal. The main goal of AEC is to retrieve
the local signal by subtracting the echo signal estimate from
the microphone. In order to form the acoustic echo estimate,
the procedure needs an estimate of the acoustic path. While
it is often time dependent, the AEC usually relies on adaptive
filtering to recursively estimate w(t).

ŵ(t) w(t)

s(t)y(t)
d̂(t)

x(t)
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Fig. 1: AEC pipeline

Traditional time-domain adaptive filtering methods (Nor-
malized Least Mean Squares - NLMS [1] or Recursive Least
Squares - RLS) as well as frequency-domain NLMS [2]
approaches identification performance drops in the presence
of both local signal s(t) and echo also called “double-talk”
(DT) periods. To tackle this problem, a full body of work
equipped adaptive filters with double-talk detectors (DTDs)
[3], [4]. The purpose of such DTD, specifically designed
for AEC applications, is to slow down or even freeze the
adaptive filtering update during DT periods. However, some
situations (continuous or fast bursting double-talk) make the
DTDs unusable, calling the need for DT robust approaches
without any DTD.

Several other approaches were developed to ensure robust-
ness to DT situations. Some of them rely on variable step
size (VSS) to control adaption during DT [5]. Other use
a minimum-variance linear estimation solution rather than a
more common least squares approach to estimate the acoustic
path [6], [7]. The latter, also known as Best Linear Unbiased
Estimation (BLUE) [8], depends on the local signal properties
to produce an optimal acoustic path estimate during double-
talk.

A. Contributions and outline

In this paper we aim at developing a recursive adaptive
filtering algorithm allowing acoustic path estimation ŵ robust
to either continuous or discontinuous double-talk situations
without the need of any double-talk detector. We propose a
double-talk robust AEC method based on a twofold strategy:
a partition-block frequency domain adaptive filtering together
with a minimum-variance linear estimation (BLUE). Section II
describes our notations and model. The proposed method
is presented in section III. More precisely, we describe in
section III-B local signal frequency characteristics recursive
short-time estimation. The approach is validated on real audio
data in section IV. Conclusions and future directions are listed
in section V.

II. NOTATIONS AND MODEL

A. Notations

In the following, lower-case sans serif font (i) denotes an
integer. Lower-case bold font (v,v) expresses vectors and
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upper-case (V,V ) matrices. ∗ superscript stands for complex
conjugate and H for hermitian transpose. v̂ (resp. V̂) denotes
an estimate of v (resp. V). v[i] is the ith component of a vector
v. Other notations will be disambiguated in the text.

B. Signal Model

We assume in the following that acoustic indoor propagation
(w(t)) can be modeled with finite impulse response w(t) =
w ∈ RN. Hence, the echo (d(t)) signal originating from a
discrete reference signal x(t) reproduced by a loudspeaker
inside a room (and encompassing all the reflections) can be
expressed by:

d(t) = x(t) ? w(t), (1)

with ? denoting the convolution. Therefore, we consider in
such a setting a microphone signal modeled as:

y(t) = x(t) ? w(t) + s(t), (2)

with s(t) representing some signal of interest sometimes called
“local signal” in a communication setup, as opposed to the
reference signal x(t) also called “distant signal”. Right part of
fig. 1 illustrates microphone signal and acoustic path models.

III. DOUBLE-TALK ROBUST PBFDLMS ALGORITHM

The goal is to estimate the signal s(t) by removing the
echo from the microphone signal y(t) (i.e. performing AEC).
For that, we propose an algorithm working on a frame-
base manner based on the Partition Block Frequency-Domain
Adaptive Filtering (PBFDAF) method [9] specifically designed
to account for double-talk situations. We build our approach
on PBFDAF allowing for long acoustic path identification and
reduced latency.

A. Least Mean Squares PBFDAF framework

We observe a single channel time-domain audio signal y(t).
A M-samples long frame of such a signal is denoted y ∈ RM.
Similarly, we denote x ∈ RL a frame with L consecutive
samples from the reference signal x(t). w ∈ RN is the
time-domain finite impulse response modeling the underlying
acoustic path w(t). F ∈ CM×L is a matrix encompassing
a possibly redundant discrete frequency-domain transform
(i.e. Discrete Fourier Transform (DFT)). We form W ∈ CM×P

a time-frequency representation of w such that:

W = [w1, ...,wP],wp ∈ CM,wp
∀p
= Fwp, (3)

with wp ∈ RL a partition of w and P × L ≤ N. In a similar
way, we consider X ∈ CM×P a circulant matrix gathering the
frequency transforms of the last P overlapping frames from
the reference signal x(t) such that:

X = [x1, ...,xP],xp ∈ CM,xp
∀p
= Fxp, (4)

with xp ∈ RL a time frame from x(t). y ∈ RL contains the
L most recent samples extracted from the microphone signal
y(t). We denote y ∈ CM such that:

y = F

[
0M−L
y

]
. (5)

k is the time-frame index. Hence, the algorithm takes L new
samples from the k-th overlapping frame of x(t) and produces
L filtered samples ŝ along with an estimate of the acoustic
path Ŵ. Equations eqs. (6) to (8) describe the PBFDAF steps
using the overlap-save technique to prevent approximations
introduced by circular operations performed in the frequency
domain.

ŝ(k) =

[
0M−L
y(k)

]
−
[
0M−L
1L

]
FH

p=P∑
p=1

w(k)
p ◦ x∗(k)

p (6)

∆w(k)
p

∀p
= GΛ(k)

p ◦ x∗(k)
p ◦ Fŝ(k) (7)

ŵ(k+1)
p

∀p
= ŵ(k)

p + ∆w(k)
p (8)

where ◦ denote the Hadamard product, Λ(k)
p ∈ CM is the

frequency dependent normalization term applied to the filter
update. Computation details are given through section III-B.
G ∈ CM×M defined below allows for either a “constrained”
or “unconstrained” filter update [9], [10].

Unconstrained update Constrained update
G = IM G = FFH

B. Double-talk robust filter update

We know from [11] that contrarily to the classical least
squares approach, the Best Linear Unbiased Estimation
(BLUE) gives optimal acoustic path estimate during double-
talk periods. As used in [12], BLUE of acoustic path (eq. (9))
depends on the characteristics of the local signal s(t) (more
precisely Γs its power spectral density). However these are
unknown and often highly time-dependent [6]. Ŵ estimation
of the underlying acoustic path is given by minimizing the
following:

(
y −

∑p=P
p=1 w

(k)
p ◦ x∗(k)

p

)T (
γΓs + xT

p xp

)−1 (
y −

∑p=P
p=1 w

(k)
p ◦ x∗(k)

p

)
(9)

In the light of “regularized” Best Linear Unbiased Estima-
tion (BLUE) [12], we seek here a solution which produces
minimum residual echo and account for double-talk situations
without requiring any double-talk detector (DTD) or voice
activity detection (VAD) step. We expect that estimating the
short-time local signal (s(t)) properties simultaneously with
the acoustic path can improve AEC in double-talk situations.
We base ou approach on a specific filter update (eq. (7))
normalization Λ(k)

p . In order to derive Λ(k)
p , we first perform

the following steps:

• Microphone and reference signals Power Spectral Densi-
ties and Cross Power Spectral Densities estimation,

• Echo to Signal Ratio estimation,
• Local signal s(t) Power Spectral Density estimation,

detailed hereafter.
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a) Power Spectral Densities (PSD) estimations:
We consider Γxp ∈ RM (resp. Γy ∈ RM) the PSD of the pth

frame of the signal x(t) (resp. of y(t)). Similarly, Γsp ∈ RM

is the PSD of the pth frame of the signal s(t). We also denote
Γyxp the cross PSD for that corresponding frame. PSD and
cross PSD estimates are then expressed as follow:

Γ̂
(k)

xp
[m]

∀p,m
= αΓ̂

(k−1)
xp

[m] + (1− α)|x(k)
p [m]|2, (10)

Γ̂
(k)

y [m]
∀m
= ηΓ̂

(k−1)
y [m] + (1− η)|y(k)[m]|2. (11)

For better readability we drop the frequency index m in the
remaining equations, however these hold for each partition p
and each frequency component m:

Γ̂
(k)

yxp

∀p
=


ξΓ̂

(k−1)
yxp

+ (1− ξ)|yxp|2 if Γ̂
(k−1)
yxp

≤ |yxp|2,

(
δ

√
Γ̂
(k−1)
yxp

+ (1− δ)|yxp|
)2

otherwise,

(12)
with α, η, ξ and δ ∈ (0, 1).

b) Instantaneous Echo to Signal Ratio (ESR) estimation:

We consider Πp ∈ RM the instantaneous ESR for partition p.
We derive its estimate as:

Π̂
(k)

p
∀p
= β

Γ̂y

Γ̂
(k−1)
sp

◦
Π̂

(k−1)
p

1 + Π̂
(k−1)
p

+(1−β)

 Γ̂
(k)

yxp

Γ̂
(k)

xp

◦ 1

Γ̂
(k−1)
sp

 ,

(13)
and β ∈ (0, 1). This step, relying on short-time power spectral
densities estimations links to decision-directed Signal-to-Noise
Ratio estimation approach [13].

c) Local signal PSD Estimation:
From the estimates of the microphone PSD and the instan-
taneous ESR, we write the estimate PSD of the local signal
as:

Γ̂
(k)

sp

∀p
=


Γ̂

(k)
y

1+Π̂
(k)
p

if Π̂
(k)

p ≤ ζ,

Γ̂
(k−1)
sp otherwise,

(14)

with ζ ∈ R>0.
Once all the previous estimates are available, we derive

a normalization term depending on the partition and the
frequency Λ(k) = [Λ

(k)
1 , ...,Λ(k)

p , ...,Λ
(k)
P ] ∈ RM×P to apply

to the filter update step such that:

Λ(k)
p =

µ

Γ̂
(k)

xp
+ γΓ̂

(k)

sp

, (15)

with µ ∈ (0, 1] and γ ∈ R>0. When γ is close to 0, the al-
gorithm then recasts as the simple Partition Block Frequency-
Domain “Normalized” Least Mean Squares [9].

IV. EXPERIMENTS

A. Experimental setup

In order to validate the algorithm, we perform experiments
on single channel audio data targeting 2 different scenarii. One
is dedicated to vocal assistant interactions (someone requesting
something while music is playing) referred to as “Vocal As-
sistant” and another dedicated to interpersonal communication
between two persons referred to as “Communication”. We
choose as the local signal s(t) to recover, speech excerpts
from the gender-balanced 120 speakers French corpus BREF
[14]. For the “Vocal Assistant” use case, as reference signals
x(t) we choose monophonic versions of the RWC Pop dataset
[15]. For the “Communication” use case, as reference signals,
we also choose speech from the French corpus BREF. Finally,
for acoustic paths w(t) we use the MARDY dataset [16]. We
artificially generated echo signals randomly picking a filter
from the MARDY database and convolving it to a reference
signal. Input signals y(t) are obtained by mixing those echo
signals with s(t) at 4 different Signal-to-Echo Ratio (SER) {-
20dB, -10dB, 0dB, 10dB}. We compare the proposed method
with our implementation of a frequency domain AEC baseline
[12] able to cope with double-talk situations thanks to BLUE
and information on the local signal acquired during low-energy
echo period. For the “Communication” use case, vocal activity
detection on the reference signal (provided by [17]) allows
[12] to estimate local signal PSD. For the “Vocal Assistant”
use case, a 3 seconds time period with only local signal at
the begining of the sound excerpt allows such an estimation.
We also compare with the same baseline method benefiting
from ground-truth local signal PSD values (denoted as “ [12]
w/ Oracle PSD” in the following). Experimental parameters
are summarized in table I. Practically, redundant frequency
transform (F ∈ CM×L,M > L) is achieved through zero-
padding on time-domain signals.

Signal based measures We compare the performance of
the adaptive filtering methods with the Echo Return Loss
Enhancement (ERLE) index expressed in dB:

ERLE = −10 log

(
‖ŝ− s‖22
‖y − s‖22

)
. (16)

Note that this definition of ERLE uses direct access to the
residual echo and undistorted echo.

Automated Speech Recognition evaluation Finally we run
a comparison on automated speech recognition (ASR) task and
report the Word Error Rate (WER) obtained by Cobalt Speech
Recognition, developed by Orange Labs for French ASR. It is
a Kaldi-based speech-to-text de-coder [18] using a time-delay
neural network based acoustic model [19] trained on more than
2000 h of clean and noisy speech, a 1.7-million-word lexicon,
and a 5-gram language model trained on 3 billion words.

B. Results

Bar plots presented in this section are average performance
results across the 120 tested speakers. Thin black vertical bars
denote 95% confidence intervals. Figure 2 shows that for either

173



TABLE I: Experimental parameters

Parameter Sampling Frequency Overlap Estimated filter size Number of partitions µ Frequency transform Constrained update α, η, ξ, δ β ζ

Value 16 kHz 50 % 192 ms P = 12 0.5 F = DFT G = FHF 0.8 0.98 1 · 1010
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Fig. 2: Signal to Echo Ratio vs Echo Return Loss Enhancement

tested use-cases (Vocal assistant: i.e. continuous echo and
discontinuous local signal, Communication: i.e. discontinuous
echo and local signal) the proposed approach outperforms the
baseline and is even on par with the method benefiting from
the ground-truth local signal PSD for continuous echo at low
SER.

Figure 3 shows improvements of the WER index for almost
all methods and configurations compared to the unprocessed
microphone signal. As a comparison, with this ASR tool the
clean local signals reaches average WER as low as 4.3%
which is theoretically the best value to target with perfect
echo cancellation. However, the simulated communication use-
case appears more challenging here with globally higher WER.
These reflect insertions in the the transcription of words from
the reference signal and still recognized from the residual
echo, explaining values above 100%

Figure 2 and fig. 3 show globally improved performance
over the baseline [12]. Results with ground-truth local signal
PSD also suggest that the proposed approach can still be
improved with a better estimation of the local signal spectral

content.
Figure 4 displays ERLE across time on a short excerpt for

both use-cases (tested SER is here -20 dB). Bottom plot on
fig. 4a shows that the proposed approach brings improvements
over the baseline for both echo only and double-talk time
periods. Figure 4b reports ERLE for the vocal assistant (con-
tinuous echo) with a sudden acoustic path change happening
at t=20 s. This plot shows better performance (around 25 dB
ERLE) compared to the baseline coming at a cost of slightly
slower convergence after the acoustic path change.

V. CONCLUSION

We introduced a new approach combining a partition
block frequency-domain adaptive filtering with a specific filter
update normalization to achieve acoustic echo cancellation
in double-talk situations. The proposed method, relying on
instantaneous Signal-to-Echo Ratio estimation, brings sub-
stantial improvement compared to [12] without the need of
double-talk detectors or prior information on the local signal.
We demonstrated the algorithm usefulness when used in
a signal-processing pipeline using speech recognition task.
Experimental results also showed improved ERLE and speech
intelligibility objective prediction which could probably still
be improved within a full echo cancellation setup including
residual echo suppressor. Future work could include perceptual
assessment and more challenging situations [20] as well as
testing such an approach within the Iterated Partitioned Block
Frequency–Domain Adaptive Filtering framework [21].
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