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Abstract—Jitter and shimmer are voice-quality features which
have been successfully used to detect voice pathologies and
classify different speaking styles. In this paper, we investigate
the usefulness of such voice-quality features in neural-network
based speaker verification systems. To combine these two sets of
features, the cosine distance scores estimated from the two sets
are linearly weighted to obtain a single, fused score. The fused
score is used to accept/reject a given speaker. The experimental
results carried out on Voxceleb-1 dataset demonstrate that the
fusion of the cosine distance scores extracted from the mel-
spectrogram and voice quality features provide a 15% relative
improvement in Equal Error Rate (EER) compared to the
baseline system which is based only on mel-spectrogram features.

Index Terms—jitter, mel-spectrogram, fusion, shimmer,
speaker recognition

I. INTRODUCTION

Speech analysis methods relies on effective feature extrac-
tion, which is used to retrieve relevant information from the
acoustic signal. The feature extraction module therefore needs
to extract features that have large between-speaker variability
and small within-speaker variability. Most of the state-of-
the-art speaker verification systems use only the short-term
features such as MFCC or the mel-spectrogram [1], [2].

While short-term features capture the local speech char-
acteristics in a short time window, long-term features reflect
voice characteristics over a whole utterance. Thus, long-term
features capture phonetic, prosodic, lexical, syntactic, semantic
and pragmatic information. Short-term features are extracted
from a single speech frame, while long-term features are
extracted from portions of speech longer than one frame.
Since long-term features provide discriminative power, fusion
of short-term spectral features with long-term features has
been applied on different speech applications [3]–[5]. Long-
term speech features are also robust to channel variation since
temporal patterns do not change with the change of acoustic
conditions [6].

Jitter and shimmer voice-quality measurements are long-
term estimates that discern variations of fundamental fre-
quency and amplitude, respectively. Studies show that these
measurements can be used to detect voice pathologies [7],
speaking styles and emotions [8], and also identify age and
gender [9]. For example, fusing jitter and shimmer voice-
quality measurements with the baseline cepstral features im-

prove the performance of Gaussian mixture model (GMM)
based speaker recognition systems [10]. Moreover, using jit-
ter and shimmer measurements together with cepstral ones
improves the classification accuracy of different speaking
styles [8]. Such voice-quality features are also important in
speaker diarization [5], [11]–[13], and they can be used to
characterize different types of voices such as breathy, tense,
harsh, whispery and creaky [7].

The main contribution of this work is that we propose the
use of voice-quality features for deep learning based speaker
verification systems. The voice-quality features are used to-
gether with the short-term mel-spectrogram features. The
fusion of the voice-quality features with the mel-spectrogram
is carried out at the score likelihood level, i.e., the cosine
distance scores extracted using the mel-spectrogram and voice-
quality models are linearly weighted. We are interested in
voice-quality features since jitter and shimmer measurements
show significant differences between different speaking styles.
Since these features have shown potential for characterizing
pathological voices and linguistic abnormalities, they can be
also employed to characterize a particular speaker.

The rest of this paper is organized as follows. The next
section gives an overview of voice-quality features used in
our work. Section III described the architecture of the pro-
posed system and the fusion technique. Experimental results
and conclusions are presented in Section IV and Section V,
respectively.

II. VOICE-QUALITY FEATURES

Voice-quality features characterize the glottal excitation sig-
nal of voiced voices such as glottal pulse shape and fundamen-
tal frequency, and carry speaker-specific information. Analysis
of the voice-quality of a person is a valuable technique for
speech pathology detection [14]. Voice quality is composed of
many aspects of the speech production. It is characterized by
qualitative terms such as hoarseness, whispering, creakiness,
etc. The acoustic parameters can be used to detect if a person
has a pathological problem. The most widely used acoustic
parameters used to assess the quality of a voice are jitter,
shimmer and harmonics-to-noise ratio.

The calculation of jitter and shimmer measurements is
usually based on an autocorrelation method for determining
the frequency and location of each cycle of vibration of the
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vocal folds (i.e., pitch marks) [15]. In addition to this, voice
quality features are related to the shape and dimension of the
speaker’s vocal tract, and the way how the speech is generated
by the voice production mechanism.

There are many possible jitter and shimmer measurements.
By using Praat [16], one can extract 5 different jitter and
6 different shimmer measurements. In this work, we have
extracted 4 jitter and 5 shimmer measurements.

A. Jitter

Deviations from the mean pitch period length of a voice
signal are known as jitter. Ideally, each cycle of a speech signal
would have the same period length. Jitter measures how much
one period differs from the next in the speech signal. It is
mainly due to fluctuations in the opening and closing times of
the vocal folds and they introduce a distortion which appears
as a frequency modulation in the speech signal. Jitter is a
useful measure in speech pathology since pathological voices
often have a higher jitter than healthy voices [17]. The values
of jitter can be higher because of a number of conditions that
affect the vocal cords such as nodules, polyps, and weakness
of the laryngeal muscles. We extract the following types of
jitter measurements:

• Jitter (local): The average absolute difference between
consecutive period lengths, divided by the average period
length.

• Jitter (local, absolute): The average absolute difference
between consecutive period lengths in seconds.

• Jitter (rap): The relative average perturbation is the
average absolute difference between a period and the
average of it and its two neighbours, divided by the
average period.

• Jitter (ppq5): The five-point period perturbation quotient
is the average absolute difference between a period and
the average of it and its four closest neighbours, divided
by the average period.

B. Shimmer

Similar to jitter, but instead of looking at periodicity, shim-
mer quantifies the difference in amplitude from cycle to cycle.
Shimmer changes with the reduction of glottal resistance and
mass lesions on the vocal cords and is correlated with the
presence of noise emission and breathiness. It is also a useful
measurement in speech pathology since pathological voices
often have higher shimmers values more than the healthy
voices [17].

We extract the following types of shimmer measurements:
• Shimmer (local): The average absolute difference be-

tween the amplitudes of consecutive periods, divided by
the average amplitude.

• Shimmer (local, dB): The average absolute base-10
logarithm of the difference between the amplitudes of
consecutive periods, multiplied by 20.

• Shimmer (apq3): The three-point amplitude perturbation
quotient is the average absolute difference between the

amplitude of a period and the average of the amplitudes
of its neighbours, divided by the average amplitude.

• Shimmer (apq5): The five-point amplitude perturbation
quotient is the average absolute difference between the
amplitude of a period and the average of the amplitudes of
it and its four closest neighbours, divided by the average
amplitude.

• Shimmer (apq11): The 11-point amplitude perturbation
quotient is the average absolute difference between the
amplitude of a period and the average of the amplitudes
of it and its ten closest neighbours, divided by the average
amplitude.

 Ti-1  Ti
 Ti+1

Fig. 1. Jitter measurements for 3 pitch periods

Ai-1
Ai Ai+1

Fig. 2. Shimmer measurements for 3 pitch periods

III. PROPOSED ARCHITECTURE AND FUSION TECHNIQUE

To improve the performance of the CNN based speaker veri-
fication system, we propose a score-level framework that fuses
the information provided by mel-spectrograms and voice-
quality features. Let the number of speakers to be enrolled for
the speaker verification system be N . The enrollment data is
used to train two sets of convolutional neural network (CNN)
models: one model using the mel-spectrogram and another
model using voice-quality features. Given an unseen test utter-
ance, the mel-spectrogram and voice-quality features are first
computed. Then, they are scored with their respective models
to obtain two sets of cosine distance scores. Afterwards, the
two cosine distance scores predicted using the two models are
combined in a weighted fashion such that the weights sum to
1. Finally, the combined scores are used to make a decision
(i.e., accept/reject a speaker identity).

Firstly, jitter and shimmer voice quality features are ex-
tracted from the fundamental frequency contour. Then, they are
fused together with the baseline mel-spectrogram features. The
fusion of the two streams is carried out at the score likelihood
level, i.e., we combine the cosine distance scores predicted
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Fig. 3. The proposed CNN based speaker verification system using short-
term mel-spectrogram and long-term voice-quality features. While the arrows
in black (undotted) correspond to training (enrollment) phase, the arrows in
red (dotted) correspond to evaluation.

using the mel spectrogram model and voice-quality feature
trained model.

The fused cosine-distance score is

score(i,j) = β
xi

Txj

‖xi‖‖xj‖
+ (1− β) yi

Tyj

‖yi‖‖yj‖
, (1)

where the scalar score(i,j) is the fused cosine distance score
of test file i and test file j, xi and xj are the corresponding
speaker embeddings extracted using the mel-spectrogram CNN
model for test file i and test file j, respectively and yi and yj

are the speaker embeddings extracted using the voice-quality
CNN model for the same test files i and j, respectively. In
addition, two different weights are applied on the predicted
cosine-distance scores. While β weights the cosine-distance
predicted using speaker embeddings extracted using mel-
spectrogram CNN trained model, (1− β) weights the cosine-
distance of speaker embeddings extracted from the voice-
quality features CNN model.

IV. EXPERIMENTS

A. Database and experimental setup

The input features of the baseline system are mel-spec-
trograms, computed within a 30ms frame window at 10ms
shift using Librosa [18]. Mean and variance normalization is
performed on every frequency bin of the spectrum. The voice-
quality features are extracted over 30ms frame length and at
10ms shift using Praat software [16]. Each of the voice-quality
features are then estimated over a 500 ms window with 10ms
shift. This is done to smooth out the feature estimation of
the unvoiced frames. It is also done to synchronize the voice-
quality features with the short-term ones. We analyzed the

smoothing using different window sizes (i.e., 100, 200, 300,
400 and 500ms) on the development set. We have used 500
ms as a smoothing window since it provides us the lowest
percentage of zeros values for the unvoiced frames of voice-
quality features in the development set.

Both the mel-spectrograms and voice-quality features are
extracted from the first 3.5 seconds of Voxceleb-1 audio
files. Thus, the sizes of the mel-spectrogram and voice-quality
features are 350×80, and 350×9, respectively. Since the size
of mel-spectrograms is 350 by 80, we use “Conv 2D”. But,
we use “Conv 1D” for the voice-quality features have size of
350 by 9.

Our system was implemented using the Keras deep learning
library [19] to train the two models: one model using mel-
spectrogram and another model using voice-quality features.
Each network is trained on a Titan X GPUs for 100 epochs or
until the validation error stops decreasing, whichever is sooner,
using a batch-size of 64. We use SGD with momentum (0.9),
weight decay (5E − 4) and a logarithmically decaying learning
rate (initialised to 10−2 and decaying to 10−8).

The proposed speaker verification system has been carried
out on the VoxCeleb-1 database [20]. It contains 148,642
development and 4,874 test utterances, which belong to 1211
and 40 speakers, respectively. From the test set, 37,720 exper-
imental trials were scored. Half of them are client trials while
the other half are impostor trials.

Performance was evaluated using two performance metrics:
(i) the Equal Error Rate (EER) which is the rate at which
both acceptance and rejection errors are equal; and (ii) the
cost function

Cdet = Cmiss × Pmiss × Ptar +Cfa × Pfa × (1−Ptar)
(2)

where we assume a prior target probability Ptar of 0.01 and
equal weights of 1.0 between misses Cmiss and false alarms
Cfa. Both metrics are commonly used for evaluating identity
verification systems.

Note that in order to validate the generalization of results,
the weight parameters in Eq. 1 were first tuned using few
data from the development set of Voxceleb-1. Then, the tuned
weight values have been directly used on the Voxceleb-1 test
set. In the development set, a weight value of 0.9 and 0.1 gave
us the best EER values for the spectrogram and voice-quality
features, respectively. Thus, in the test set, we evaluated the
EER using a weight value of 0.9 for the spectrogram and 0.1
for the voice-quality features.

B. Experimental results

Figure 4 shows that the baseline system which is based
only on mel-spectrogram features has an EER of 8.1%. Our
baseline EER on Voxceleb-1 dataset is almost similar to
other similar works that use CNN architecture for speaker
verification [20], [21].

The figure shows that the fusion of the mel-spectrogram
with the 9 voice-quality features reduces the EER to 6.9%.

178



  1     2     5     10    20    40  

False Alarm probability (in %)

  1   

  2   

  5   

  10  

  20  

  40  

M
is

s
 p

ro
b
a
b
ili

ty
 (

in
 %

)
Mel-spectrogram  = 8.1%

Mel-spectrogram + JS (3)  = 7.29%

Mel-spectrogram + JS (9) = 6.9%

Fig. 4. EER of the baseline and proposed system. While the baseline system
is based only on mel-spectrogram features, the proposed system uses mel-
spectrogram together with voice-quality measurements. JS (3) and JS (9)
represent the use of three and nine types of jitter and shimmer measurements,
respectively

This represents a 14.8% relative EER improvement compared
to the baseline system. Encouraged by the previous works
of [22], we have also carried out another experiment where we
use only absolute jitter, absolute shimmer and shimmer apq3
measurements since these three measurements proved to be
useful for speaker diarization. Table I shows that the fusion of
mel-spectrogram with these three voice-quality measurements
provide an EER of 7.29%, which is almost a 10% relative
EER improvement compared to the baseline system.

In addition to EER, we have also compared the minimum
detection cost function (minDCF) values of the baseline and
proposed system. As it is reported in Table II, the minDCF
value of the baseline system is 0.72. While the fusion of the
mel-spectrogram with the three voice-quality features reduce
the minDCF value to 0.7, the fusion of the mel-spectrogram
with the nine voice-quality features reduce the minDCF value
to 0.57.

Thus, the results reported in Figure 3 and Table II demon-
strate that the voice-quality features provide useful and com-
plementary speaker information. The experimental results
show that adding jitter and shimmer voice quality features
to the baseline mel-spectrogram features reduce both the EER
and minDCF values.

In order to generalize the results reported in Table I, we have
also analyzed the EER and minDCF values of the baseline and
proposed system by partitioning the Voxceleb-1 37,720 test
trials into 4 equal partitions. Thus, each partition has 9430
trial files. The results reported in Table II demonstrate that
both EER and minDCF values of the proposed system for
the whole partition sets are better than the baselines system
which uses only mel-spectrogram features. Thus, the results
of Table I and Table II show the usefulness of voice-quality
features for deep neural network based speaker verification

TABLE I
EER AND MINDCF OF THE BASELINE AND PROPOSED SYSTEM. JS (3)

AND JS (9) REPRESENT THE USE OF THREE AND NINE TYPES OF JITTER
AND SHIMMER MEASUREMENTS, RESPECTIVELY.

Features EER minDCF
Mel-spectrogram (Baseline) 8.1% 0.72
Mel-spectrogram + JS (3) 7.29% 0.7
Mel-spectrogram + JS (9) 6.9% 0.57

TABLE II
EER AND MINDCF OF THE BASELINE AND PROPOSED SYSTEM AFTER
PARTITIONING THE VOXCELEB-1 37,720 TEST TRIALS INTO 4 EQUAL

PARTITIONS (I.E., EACH PARTITION HAS 9430 TRIAL FILES).

Features

Mel-spectrogram
Mel-spectrogram

+
Voice-quality

EER(%) minDCF EER(%) minDCF
Partition 1 10.73 0.7 8.37 0.66
Partition 2 7.03 0.6 7.05 0.52
Partition 3 6.95 0.6 5.59 0.48
Partition 4 7.3 0.57 6.41 0.4

systems. The experimental results demonstrate that the voice-
quality features convey useful and complementary speaker
information to the mel-spectrograms.

Note that in addition to the score level fusion, we have also
carried out another experiment by fusing the spectrogram with
the voice-quality features at the feature level to compare the
results of feature fusion with score fusion technique. Thus,
we fused the spectrogram and voice-quality features to form
a 350 X 9 vector and trained a single CNN. In a preliminary
experiment we have conducted to analyze the impact of
feature fusion, the feature fusion technique does provide better
result than the baseline system. Thus, in the future, in-depth
experiments in this direction would be interesting in order to
confirm our findings.

V. CONCLUSIONS

In this work, we have proposed the use of jitter and shim-
mer voice-quality measurements as complementary source
of information to CNN based speaker verification system.
Experimental results on Voxceleb-1 corpus show that the
fusion of the voice-quality with the mel-spectrograms at the
score level increases speaker verification performance. The
experimental results show that the augmentation of voice-
quality features to the mel-spectrogram provide almost a 15%
relative EER improvement. Thus, the results reported in this
work manifest the usefulness of voice-quality measurements
as complementary source of information for neural network
based speaker verification system.

The future work could focus on extracting i-vectors from
the voice-quality features and analyze their impact using both
cosine distance and Probabilistic Linear Discriminant Analysis
(PLDA) scoring techniques.
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