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Abstract—Room acoustic parameters, such as reverberation
time (T60) and clarity (C80), as well as the speech transmission
index (STI), are essential in acoustics. However, such parameters
and STI are difficult to obtain in everyday places where people
exist. Blind estimation for those parameters without measuring
room impulse response (RIR) is necessary and challenging. This
paper proposes a method based on the modulation transfer
function (MTF) and Schroeder’s RIR model for estimating
T60s in seven-octave bands. The estimated T60s are used to
approximate the MTF and RIR. Consequently, the STI and five
room-acoustic parameters, including T60, early decay time (EDT),
C80, Deutlichkeit (D50), and center time (Ts), can be estimated.
We deploy convolutional neural networks for mapping temporal
amplitude envelopes of a reverberated speech signal to T60s
for the sub-bands. Simulations were carried out by estimating
the five parameters and STI from unseen reverberated speech
signals. The root-mean-square errors between ground-truths and
estimated parameters suggest that the accuracy of the estimated
T60 and STIs can be improved by about 40% and 25% compared
with previous methods, respectively. The other parameters were
also correctly estimated, and they are comparable with those
obtained from standard measurements.

Index Terms—reverberation time, speech transmission index,
room acoustic parameter, room impulse response, modulation
transfer function

I. INTRODUCTION

Subjective aspects in speech and music assessments, such
as speech intelligibility and music clarity in enclosures, can
be objectively described through room acoustic parameters
and objective indices [1]. Room acoustic parameters are also
crucial for architectures or acousticians who are involved in
an auditorium [2]. Most of the parameters in ISO 3381, such
as reverberation time (T60), early decay time (EDT), clarity
(C80), Deutlichkeit (D50), and center time (Ts), are derived
from room impulse response (RIR) [3]. Similarly, a speech
transmission index (STI), which is an objective index in IEC
60268, can be calculated by measuring the modulation transfer
function (MTF) or can be derived from the RIR [4], [5].
Therefore, the RIR or MTF needs to be measured in general.
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However, it is difficult to measure RIR or MTF in daily
places where people cannot be excluded (e.g., stations, air-
ports, and schools). As a result, many methods have been
proposed to estimate such a parameter without measuring
the RIR as so-called blind estimation. Unoki et al. proposed
methods based on the concept of the MTF to estimate T60
and STI [6]–[8]. Kendrick et al. proposed the maximum
likelihood estimation to approximate energy decay curves from
reverberated speech and music [9]. The energy decay curve is
used for calculating T60 and EDT, as described in ISO 3381.
Techniques based on deep neural networks (DNNs) were also
successful, such as a deep convolutional neural network (CNN)
for estimating STI [10]. For T60 estimation, many approaches
have been evaluated in the Acoustic Characterization of Envi-
ronments (ACE) Challenge [11], for example, the CNN with
spectra-temporal features in the time-frequency domain [12].
Also, a recent combination of a CNN and long short-term
memory (LSTM) network has been proposed [13].

In addition to STI and T60, Parada et al. proposed an esti-
mator for the clarity index at 50 ms (C50) by using a spectral
envelope in the modulation-domain with a bidirectional LSTM
[14]. We previously proposed a robust method to estimate STI
by using the full-band temporal amplitude envelope (TAE) of
a noisy reverberated speech signal with a CNN [15]. This
method could overcome a mismatch problem between the
model and real acoustic conditions.

However, current blind estimation methods, as the afore-
mentioned ones, can estimate only a single parameter. It is
limited to a specific aspect and is inadequate to describe
the characteristics of room acoustics completely. To this end,
in this paper, we propose a scheme to simultaneously esti-
mate multiple parameters based on the basis of the MTF,
Schroeder’s RIR model, and CNNs for sub-bands. Therefore,
T60, EDT, C80, D50, Ts, and STI can be simultaneously
estimated from a speech signal in reverberant environments.

II. PROPOSED METHOD

We propose a scheme for estimating five room-acoustic
parameters and an STI, namely MTF-based CNNs, as shown
in Fig. 1. The scheme incorporates the MTF concept into a
nonlinear regression using CNNs. The T60s for sub-bands are
mapped in accordance with the characteristics of the TAEs
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Fig. 1. Block diagram of proposed method.

under reverberant conditions. RIR is approximated from the
estimated T60s to derive the five parameters and STI.

A. Definitions

In a reverberant environment, we assume that an observed
signal, y(t), is the result of the convolution between an original
speech, x(t), and RIR, h(t). The RIR is used to represent
acoustic characteristics of a given room in the time domain. In
the modulation-frequency domain, the MTF is used to quantify
the effect of reverberation [5]. The MTF is defined as

m(fm) =

∫ ∞
0

h2(t)e−j2πfmtdt∫ ∞
0

h2(t)dt

, (1)

where m(fm) is the MTF at a modulation frequency, fm. In
this study, h(t) is the RIR model proposed by M. R. Schroeder
[16], and it is defined as

h(t)=eh(t) ch(t)=a exp
(
−6.9t

T60

)
ch(t), (2)

where eh(t) is an exponential decay, ch(t) is a carrier of white
Gaussian noise (WGN), and a is a gain factor. The MTF
according to Schroeder’s RIR can be expressed as

m(fm, T60) =

[
1 +

(
2πfm

T60
13.8

)2
]− 1

2

. (3)

According to ISO 3381 and IEC 60268, the definitions of the
interested room acoustic parameters and STI are as follows.
T60 is the period in seconds unit from the energy decay curve
of the RIR when the curve decreases by 60 dB. The period of
the energy decay curve by 10 dB is the EDT.

C80 and D50 are the energy ratio between the reflection
components and total energy of the RIR. C80 is used to
characterize the transparency of music halls in dB unit and
is defined as

C80=10 log10

∫ 80ms

0

h2(t)dt∫ ∞
80ms

h2(t)dt

. (4)

D50 is used to evaluate the speech intelligibility of lecture
halls and classrooms in percent and is defined as

D50=

∫ 50ms

0

h2(t)dt∫ ∞
0

h2(t)dt

× 100. (5)

Center time, Ts, is the period at the center of gravity of the
RIR. Ts shows the balance between clarity and reverberation
related to speech intelligibility and is defined as

Ts=

∫ ∞
0

h2(t) · t dt∫ ∞
0

h2(t)dt

. (6)

Finally, the STI, an objective index, is used to assess the
speech transmission quality from a talker to a listener of
a given room [4], [5]. Hence, speech intelligibility can be
predicted by calculating STI in a scale from 0 to 1. The STI
algorithm is based on the measurement of the MTF in sub-
bands. 98 modulated stimuli are used to calculate the distortion
ratios between the inputs and observed signals. The stimuli are
amplitude-modulated signals from seven-octave-band carriers
and 14 modulation frequencies. The STI is calculated by
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weighting the modulation transmission indices of the seven-
octave bands. See [4] for more details. However, since the
MTF can be derived from RIR, as shown in (1) and known as
the indirect method, the STI can be calculated from the RIR.

B. Sub-band analysis

The sub-band analysis for estimating room acoustic param-
eters is derived from the STI algorithm, which is from the
basis of the MTFs in seven-octave bands. Thus, we exploit the
relation between the MTF and RIR, as shown in (1), within
the same bands as the STI. The bands have center frequencies
ranging from 125 Hz to 8 kHz. The normalized reverberant-
speech signal is the input. The signal is then decomposed to
each sub-band using octave-band filters.

Based on the MTF concept, a temporal envelope of any
signal is a smoothed version of the original signal when it is
passed through a reverberant space [5]. We then utilize the
seven TAEs to represent the modulation distortion character-
istics caused by reverberation in the bands. The reverberation,
in terms of the T60s, attenuates the observed TAEs. The seven
TAEs account for the accuracy enhancement of the estimating
T60 and STI as well as the other parameters.

The TAE in each band is extracted according to (7). The
observed signal is decomposed by using the Hilbert transform
and a lowpass filter (LPF). The LPF is a sixth-order Butter-
worth filter with a cut-off frequency of 20 Hz. We downsample
the signal to 40 Hz to reduce the computation complexity.
Then, the TAEs are mapped to their associated T60s for the
seven-octave bands by using CNNs.

ey(t)=LPF [|y(t) + jHilbert(y(t))|] . (7)

C. MTF-based CNN models

We deploy one-dimensional CNNs for mapping the charac-
teristics of the TAEs with their associated T60s in each octave
band. Each model consists of four convolutional layers. The
input layer takes a TAE to be convoluted with the filters. The
regulated linear unit (ReLU), f(x)=max(x, 0), performs non-
linear activation in all convolutional layer. Batch normalization
is applied after the first convolution. Max pooling is also used
for reducing the dimensions before the next layer. The dropout
rate before the last layer is set to 20%. The fully connected
layer is the output layer. The seven CNNs are trained from
the TAEs/T60s pairs. The trained models are supervised by
the T60s ground-truths. The ground-truths are calculated from
simulated RIRs. The output of each CNN for each sub-band is
the estimated T60. The details of the MTF-based CNN model
is shown in Table. I.

D. RIR approximation

The estimated T60s are used to approximate RIR, ĥ(t) ac-
cording to Schroeder’s RIR model. As Schroder’s RIR depends
on only the reverberation time, the estimated T60 for each
octave-band is used to construct the temporal envelope of the
RIR, êh(t). The temporal envelope of each band is modulated
with a band-limited Gaussian noise with a bandwidth of 1/3 of

TABLE I
NETWORK ARCHITECTURE OF THE MTF-BASED CNN MODEL.

No. Layer Type Parameters

1 Input TAE shape= 1× 200
2 Conv1D1st 32 filters, filter size=10× 1, ReLU
3 Pooling max pooling, size = 2, stride = 1
4 Conv1D2nd 16 filters, filter size=5× 1, ReLU
5 Pooling max pooling, size = 2, stride = 1
6 Dropout 0.2
7 Conv1D3rd 8 filters, filter size=5× 1, ReLU
8 Pooling max pooling, size = 2,
9 Conv1D4th 4 filters, filter size=5× 1, ReLU
10 Fully Connected 1 output (i.e., T60), ReLU
11 Regression Output mean-square-error (MSE)

Fig. 2. Example of the approximated MTFs from the estimated T60s, where
dashed lines are the estimated MTFs, and the solid line is the ground-truths.

an octave. Then, the sub-band RIRs are then summed together.
The approximated RIR can be expressed as

ĥ(t)=

K∑
k=1

exp
(
− 6.9t

T60,k

)
ch,k(t), (8)

where T60,k is the estimated T60 in the k-th band and K = 7,
and ch,k(t) is band-limited Gaussian noise. The STI can then
be calculated from the estimated T60s based on the basis of
the MTF, in (3). Also, the T60, EDT, C80, D50, and Ts can
be calculated according to the definitions, in (4), (5), and (6).

III. EXPERIMENTAL SETUP

A total of 29, 000 reverberanted speech signals with a
sampling rate of 16 kHz were generated from the simulated
RIRs convoluted with speech signals. The simulated RIRs are
based on Schroeder’s RIR model. The reverberation time of
the RIRs varies from 0.2 to 3.0 s with a step size of 0.1 s. Each
envelope with a different T60 was modulated with a different
random seed WGN carrier. There are a hundred different WGN
carrier seeds. The speech signals were ten short (five-second)
Japanese sentences uttered by five men and five women in
17. These reverberant signals were separated into 70% for
training, and the rest for testing the model (simulated RIR).

183



Fig. 3. Estimated results of room acoustic parameters and STI from observed speech signals in reverberant environments: (a) T60, (b) EDT, (c) C80, (d) D50,
(e) Ts, and (f) STI. The symbol “o” corresponds to the estimated value from the simulated RIR, “square” indicates the estimated value from the measured
RIR, “*” indicates the estimated result using the previous method [6], [15], and the dashed line represents the ground-truth calculated from the RIRs.
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TABLE II
CORRELATION COEFFICIENTS BETWEEN THE ESTIMATED AND

CALCULATED PARAMETERS.

T60 EDT C80 D50 Ts STI

Simulated rooms 0.996 0.996 0.992 0.994 0.996 0.997

Real rooms 0.915 0.870 0.918 0.818 0.822 0.902

We determine whether the proposed method can estimate the
parameters and STI even though the acoustic characteristics
might not follow Schroeder’s RIR model by using reverber-
ated speech signals in an unknown realistic environment. We
utilized 43 measured RIRs from the SMILEdataset [18]. Root-
mean-square error (RMSE) and correlation coefficient were the
metrics for indicating the accuracy of the estimation.

IV. RESULTS AND DISCUSSION

Fig 2 shows an example of the approximated MTFs from a
speech signal in a simulated room (“o”) and real room (“*”)
where T60 = 0.7 s. The dashed lines indicate the estimated
MTFs, and the solid line is the ground-truth. The averaged 14
MTFs are derived from the estimated T60s in the seven bands.
It was found that the shapes of the approximated MTFs were
similar to the ground-truths within an RMSE of 0.15 dB.

Fig 3 shows the estimated results of the estimated room-
acoustic parameters and STI from speech signals in reverberant
environments. The symbols “o” and “square” correspond to
the estimated parameters in the simulated room and realistic
room, respectively, where ‘*” is the value estimated using
the previous methods. The horizontal axis indicates the pa-
rameter directly calculated from the RIRs, and the vertical
axis indicates estimated values. It was found that the results
from the simulated rooms were excellent in all parameters. On
the other hand, in the real rooms, the results suggested that
the proposed method can be used to estimate the five room-
acoustic parameters and STI. However, none of the current
methods can estimate these parameters simultaneously. We
then directly compared only T60 and STI with our previous
methods [6], [15]. The others were discussed from the results
compared with their ground-truths.

The results of the estimated T60 and STI show that the
proposed method outperforms the previous methods since it
provided significantly lower RMSEs. The estimated T60 was
improved about 40%, and 25% for the STI compared with
the previous methods, respectively. For C80, D50, and Ts, the
RMSE were 1.66 dB, 11.85%, and 0.06, respectively. The
estimated C80 was close to the accuracy from the standard
measurement [3]. However, the estimated D50 and Ts have
remaining outliers. Those errors might be caused by a mis-
match between the RIR model we used and the real RIRs.

Table II shows the correlation coefficients between the esti-
mated parameters and ground-truths. The results show that the
proposed method was successful in unseen simulated rooms
since the correlation coefficients were close to 1. For the
real rooms, the proposed method has high correlations in all
parameters, but the estimated D50 and Ts were slightly low.

V. CONCLUSION

We proposed a blind method for estimating five room-
acoustic parameters (i.e., T60, EDT, C80, D50, and Ts) and
the STI. We leveraged the relationship between a stochastic
RIR model and its MTF to estimate T60 for seven-octave
bands. The proposed scheme estimated T60 from the temporal
amplitude envelope of an observed signal in each band. The
estimated T60s were used to approximate the MTF and RIR for
deriving of the room acoustic parameters and STI. Simulations
were carried out to determine whether the proposed method
could estimate the room acoustic parameters and STI from
reverberated speech signals even if the RIRs were not the
same as Schroeder’s RIR model. The experimental results in
terms of RMSEs and correlation coefficients showed that the
proposed method yielded a better accuracy, compared with the
baselines for the STI and T60. Also, the estimated EDT, C80,
D50, and Ts were also close to the standard methods.
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