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Abstract—Recent automatic lyrics transcription (ALT) ap-
proaches focus on building stronger acoustic models or in-
domain language models, while the pronunciation aspect is
seldom touched upon. This paper applies a novel computational
analysis on the pronunciation variances in sung utterances
and further proposes a new pronunciation model adapted for
singing. The singing-adapted model is tested on multiple public
datasets via word recognition experiments. It performs better
than the standard speech dictionary in all settings reporting
the best results on ALT in a capella recordings using n-gram
language models. For reproducibility, we share the sentence-
level annotations used in testing, providing a new benchmark
evaluation set for ALT.

Index Terms—automatic lyrics transcription, music informa-
tion retrieval, computational linguistics, automatic speech recog-
nition

I. INTRODUCTION

The articulation of words during singing is influenced by
the melodic line causing temporal variations in duration and
the acoustic properties of the signal like pitch, timbre and
loudness. Singers may even add an extra formant on top
of the ones that characterize vowels, namely the singer’s
formant [1], increasing the perceived loudness of the voice.
Consequently, these articulations during singing may alter the
ways that words are pronounced and how they are perceived,
thus affecting overall intelligibility [2]. Similarly, the perfor-
mance of ALT systems that attempt to automatically recognize
words from singing voice also gets affected by these altered
pronunciations and variations in the acoustic properties. While
only a little focus has been drawn to computationally model
the pronunciation variances in singing performances, Gupta et
al. [8] proposed to use a vowel-extended version of a standard
lexicon with regards to the longer vowels in sung utterances
and observed considerable improvement in word recognition.

In this study, we aim to shed a light on the pronunciation dif-
ferences in sung utterances compared to speech by conducting
a novel quantitative analysis on the phoneme level, identifying
a number of systematic cases. Furthermore, we propose a
new lexicon adaptation method for modelling of singing, and
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evaluate its effectiveness through word recognition rates over
a number of open-source data sets. Additionally, we test the
findings of the phonetic analysis through an error analysis. For
reproducibility, we share the annotations publicly.

This paper begins by establishing a contextual ground to
understand how the pronunciation models are employed in
common hybrid-ASR frameworks. In Section 3, the details
of the phonetic analysis are presented. Then, a method is
proposed for extending a standard pronunciation dictionary
for singing with respect to the observations of the analyses in
Section 3. Section 4 explains the ALT setup for the recognition
experiments. Section 5 provides the error analysis in terms of
word and character error rates.

II. RELATED WORK

The task of ASR can be summarized as finding the most
probable word sequence, ŵ, given a sequence of acoustic
observations, X, which can be expressed using the following
formula:

ŵ = argmax
w

P (w)
∑

Q∈Qw

, P (X|Q)P (Q|w) (1)

where Q is a sequence of phonemes and Qw is the set of all
possible state sequences that correspond to the word sequence
w, as defined by a lexicon (i.e. pronunciation dictionary) [9].
Then, P (Q|w) gives the probability of observing a certain
phoneme sequence belonging to a word.

The speech recognition framework we use, Kaldi [10],
constructs the decoding graph via Weighted Finite State Trans-
ducers (WFSTs) [11]. The final decoding graph HCLG is a
composition of multiple finite-state transducers:

HCLG = H ◦ C ◦ L ◦G, (2)

where ◦ is the operation of graph composition for finite-state
transducers (FST), and each element in Equation 2 represents
a FST [11]. In summary, the phoneme posteriors are obtained
via the acoustic model in H , and the HMM phone states are
converted/relabeled to context-dependent ‘triphone’ states via
C. Finally, the operation L ◦G pairs any word string w in a
pronunciation lexicon to its corresponding pronunciation qw.
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While it is common to use the standard CMUSphinx English
Pronunciation Dictionary [12] in lyrics transcription [4], [6], a
vowel-extended version has also been shown to be beneficial
for word recognition [8]. In this paper, we aim to study
the pronunciation variances in singing through a confusion
analysis, a procedure similar to the ones presented in [13],
[14]. Based on profound phonemic confusions, we create an
extended version of the standard CMU dictionary by adding
alternative word pronunciations for singing, which has been
shown to be an effective method in ASR [15].

III. PRONUNCIATION ANALYSIS

The phonetic analysis is based on the confusions between
orthographic transcriptions, Q̂, produced by a pretrained ALT
model that uses a pronunciation dictionary for speech (CMUS-
phinx [12]) and the human phoneme annotations, Q, on the
singing performances chosen for analysis. We use the NUS
Sung and Spoken Lyrics Corpus [16] due to the availability of
phoneme-level annotations, and choose native English speak-
ing (with North American accent) singers f01, f02, m09, m11
for analysis. We limit our analysis to these singers in order to
minimize the influence of non-native accents.

Initially, the word transcriptions Ŵ are extracted and de-
composed into their phonemic representations Q̂ by decom-
posing the lexicon transducer L from the decoding graph
HCLG . To get the phoneme confidences, we align Q̂ with
their corresponding manually annotated phoneme sequences.
During this alignment, we take the following steps:

1) We compute the alignment score matrix D by perform-
ing Levenshtein alignment, lev, between the phoneme
tokens q of the predictions Q̂M and the ground truth
QN :

DM×N = lev(Q̂M ,QN ), (3)

and find the best alignment path, A2×K through reverse
tracing to find the path with the lowest pairwise gap
cost:

A2×K =

(
. . . qk−1 qk qk+1 . . .
. . . q̂k−1 q̂k q̂k+1 . . .

)
. (4)

A can be interpreted as a sequence of phoneme pairs.
2) There are three operations defined on these phoneme

pairs to match Q̂M to QN : insertions (I), substitutions
(S) and deletions (D). These operations are represented
in A with the symbol ε. An alignment instance ak =(
ε
q̂∗k

)
is a deletion and the opposite case would be an

insertion.
3) Let the number of correctly matching pairs in A be C,

then the confidence score per phoneme type, cq , can be
retrieved as:

cq =

∑T
i Cq,i − (Sq,i + Iq,i +Dq,i)∑T
i Cq,i + Sq,i + Iq,i +Dq,i

,

q ∈ ΩE , (5)

where T is the number of utterances in the analysis set
and ΩE is the English phoneme set used in our analysis.

The denominator is necessary to normalize with respect
to the total number of pairs in A, since the phonemes
in ΩE are not necessarily represented equally in the
analysis data set.

Vowels q cq(R) Φ′
N

Short Vowels

AE -0.42 (38) AH, EH, AA
AH 0.17 (33) AA,EH,OW
EH 0.3 (32) AH,AE,IH
IH 0.48 (26) IY,AH,EY
UH 0 (36) AO,UW,AH

Long Vowels

AA 0.5 (24) AO,AW,AE
AO 0.06 (35) AA,AH,OW
ER 0.36 (31) AH,OW,EH
IY 0.87 (6) EY,IH,EH
UW 0.88 (4) OW,AH,UH

Diphthongs

AY 0.86 (8) AA,AH,EH
AW 0.71 (18) AA,AH
EY 0.87 (7) IY,AY,EH
OW 0.76 (17) AO,AA,AH
OY 0.4 (28) OW,AO,AY

TABLE I: Results of the phonetic analysis (vowels)

Tables I and II show the results of the phoneme confusion
analysis for vowels and consonants respectively. The first two
columns from the left are the list of English phoneme cate-
gories and types1. In the middle column, the confidence scores
and their confidence rankings R are provided. By definition
in Equation 5, −1 ≤ cq ≤ 1, hence we did not further
normalize this value. According to Equation 5, cq < 0.25
means that there are less true positives than the sum of false
negatives and positives in per phoneme type predictions, i.e.
in most cases, q is predicted incorrectly. The phonemes in the
rightmost column, Φ′, are determined according to the most
frequent instances of substitutions.

Consonants q cq(R) Φ′
N

Plosives

B 0.77 (16) D,P,W
D 0.16 (34) T,N,JH
G 0.77 (15) NG,K
K 0.85 (15) G,HH
P 0.78 (14) B,M,F
T 0.37 (29) D,S,CH

Affricates CH 0.79 (13) JH,SH,T
JH 0.88 (5) CH,S,Y

Nasals
M 0.93 (2) N,NG
N 0.85 (12) M,NG,D
NG 0.85 (9) N,M,T

Fricatives

DH 0.36 (30) TH,D,N
F 0.91 (3) V,P,TH
HH 0.70 (19) DH,W,Y
S 0.95 (1) Z,TH,T
SH 0.85 (10) CH,S,Z
TH 0.57 (21) S,T,DH
V 0.56 (22) F,R,DH
Z -0.05 (37) S,T
ZH N/A N/A

Approximants*

L 0.44 (27) AA,OW,AH
R 0.48 (25) AA,AH,IH
W 0.66 (20) AA,OW,V
Y 0.55 (23) IH, AH, IY

TABLE II: Results of the phonetic analysis (consonants)

It can be seen from the aforementioned tables that it is
mostly the vowels that have the lowest confidences. Among
vowels, diphthongs are more accurately predicted than short
vowels and long vowels. The phoneme ‘AE’ has the lowest
cq and is generally associated with the schwa sound in
phonetics [17]. This very low cq is not surprising as it is

1We use the standard 39-phoneme set of the CMU dictionary.
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Fig. 1: Confusion matrix w.r.t. phoneme categories in Tables
I and II. The red lines highlight the within-class regions for
vowels and consonants. The numbers in cells are normalized
values. The labels on the horizontal and the vertical axes
represent the ground-truth and predictions respectively.

often pronounced weakly and is one of the most frequently
occurring vowel sounds in the English language [18].

For consonants, cq has higher values in general, but does not
seem to be very consistent per phoneme category. The plosives
‘D’ and ‘T’ are severely confused indicating a systematic error,
similarly for the other phonemes ‘DH’, ‘TH’ and ‘Z’. On the
other hand, plosives ‘B,G,K,P’ have rather high confidences.
This is not extremely surprising as it has been mentioned
in the literature that singers may utilize such phonemes to
utter strong note offsets during melody construction [19].
According to this observation, the singers in our analysis
data did not seem to omit ‘B,G,K,P’ sounds. Though Φ′

in different parent phoneme categories is not considered in
Table II, we observed systematic confusions in approximants
with vowels. This might be an indication of either systematic
misalignment errors due to longer vowels, or omitted vowels
for fluency during melody construction. In addition to the short
vowels, the ‘HH’ and ‘Y’ sounds are inserted the most to the
predictions compared to the manual human annotations.

In Figure 1, we show the phoneme confusion matrix sum-
marized with respect to phonetic categories. We discard Cq

for calculating the confusions and sum only S, I and D
values for each phonetic category. Therefore the diagonal axis
does not represent self-confidences. Instead it represents the
domestic confusions within each phonetic category. Phonetic-
category-wise normalization is applied based on unit sum.
These normalization steps are crucial to get confusion values
independent of the number of occurrences. Insertions and
deletions for each category are also included in the figure.
The concentration of high confusion rates can be observed
for vowels (top left). Short vowels are mostly confused with
short vowels. The annotated longer vowels are not necessarily
represented in the standard speech lexicon, thus causing the
system to assign a higher likelihood for the short vowels
when making word predictions. Note the high number of
deleted plosives signaling them being omitted from pronun-

Fig. 2: An example of an omitted plosive in singing. W =
‘AND I ’ ; Qread = ‘AE N D AY’ (left) ; Qsing = ‘EH N AY’.
The gray horizontal lines show the temporal phoneme regions
and the bright green curves are the pitch tracks extracted using
pYIN [20].

ciations during singing. Overall, a high frequency of deletions
is observed. In addition to alignment errors, one possible
cause for this could be the word liaisons being annotated
as single phonemes in human annotations whereas the ALT
system would predict such instances as separate phonemes.
For example, in ‘DREAM MAKER’, ‘M’ is annotated once in
the corresponding Q, but detected twice in Q̂.

IV. EXTENDING THE LEXICON

In this section, we propose a pronunciation model for sung
utterances based on the observations of the previous step. We
extend the standard pronunciation model for speech through
generating alternative pronunciations for singing.

It is not seldom that in singing, performers may omit some
consonants at the endings of words. This phenomenon can
be explained as a stylistic convention that singers exhibit in
their performances in order to maintain the sonority of their
singing [1], or it could as well be a microphone technique to
avoid unpleasant pops. The analysis in Section III suggests
that this occurs most likely for plosives as the phoneme
category with highest number of deletions. An example of
an omitted plosive is illustrated in Figure 22. The spectrogram
segments in Figure 2 show the same words uttered as speech
(left) and singing (right) by the same performer. According
to the human annotators, the phoneme ‘D’, is not present
during singing. This can also be seen from the discrepancies
in the spectrogram and the undisturbed pitch curve in the
singing segment3. We add alternative pronunciations to such
words ending with consonants D, T, DH % Z by removing
their last phoneme in the corresponding qwl . We have chosen
these consonants due to them having the lowest confidences
according to the analysis in Section III .

It is noted in [3] that longer vowels in singing may po-
tentially cause alignment errors, consequently affecting the
training and thus the recognition performance. Gupta et al.
[8] proposed to extend the occurrences of vowels in each
word in the lexicon for modeling longer vowels. Through
representing longer vowels as consecutive repeated phonemes

2The analysis is performed on Sonic Visualizer software [22].
3According to the empirical study in [21], pitch and phoneme perception are

found to be cognitively correlated processes. Hence, we have chosen explicitly
to show the pitch tracks.
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a better alignment in singing performances can be achieved,
and hence a potential improvement in WER. In this study,
we also apply a similar strategy when extending the lexicon.
For instance, consider the word OCEANS with its phonemic
representation OW SH AH N Z in the lexicon. We extend the
occurrence of each vowel for up to 2 times, for example: OW
OW SH AH N Z, OW SH AH AH N Z instead of 4 times (as
in [8]) so that a smaller transducer is generated, for efficient
decoding.

The final version of the singing-adapted lexicon is con-
structed by combining the two approaches mentioned in this
section. The goal of this is to create a model that is generaliz-
able to common pronunciation variances observed in Section
3.

V. EXPERIMENTAL SETUP

We evaluate the effectiveness of the proposed singing-
adapted lexicon with respect to word recognition rate via ALT
experiments. We compare its performance in terms of word
and character error rates (WER) with a model trained on the
standard CMU English pronunciation dictionary.

For training, we utilize the train split of the DAMP data set
used by Demirel et al. [4] which consists of approximately 150
hours of monophonic singing recordings of English language
pop songs recorded in a Karaoke setting with a non-negligible
proportion of noise. There are performers from 30 different
countries in the data set, hence allowing a powerful acoustic
model to generalize the accentual variations.

Char. Words Sentences Recordings
NUS read 21935 5788 781 32
NUS sing 21935 5788 1029 32

DAMP test 17609 4626 479 70

TABLE III: Statistics of evaluation sets

For testing the lexicons, we have trained the lyrics tran-
scriber using the pipeline in [4] from the beginning at each
experimental iteration. The transcriber in [4] is based on a
hybrid-ASR framework where the acoustic model consists
of neural networks trained on lattice-free maximum mutual
information (LF-MMI) setting [23]. The neural network con-
sists of stacks of 2D fully convolutional and factorized time-
delay layers [24] with a self-attention layer added on top.
At the input of the network, we extract 40-band filterbank
features obtained with a hop size of 10ms and frame length
of 20ms. To perform singer-adaptive training, we combine
filterbank features with iVectors [25]. The phoneme posterior
probabilities learned by the acoustic model are then decoded
into a word-level representation with L and the grammar
information (i.e the language model), G. We use a 4-gram
language model (LM) using the SRILM toolkit [26] trained
on the same lyrics corpus with the ones in [4], [6] which
consists of recent English pop songs.

Results are reported on three evaluation sets (see Table III).
The first set is the test split of the DAMP - Sing! 300x30x2

data set 4 provided by Dabike et al. [6]. Other evaluation sets
are the sung (“NUS sing”) and spoken (“NUS read’) splits of
the NUS corpus excluding the native English speakers used in
the phoneme analysis in Section 3. For experiments, we have
manually segmented the NUS Corpus on the sentence level.

VI. RESULTS

In the first stage of experiments, we test the benefit of dif-
ferent lexicon extension methods. In Table IV, LCMU denote
the standard CMU lexicon. L1 and L2 stand for extended
lexicons where alternative pronunciations are generated via
removing omitted (low-confidence) consonants and extending
vowels (as explained in Section IV) separately. L3 is then the
final singing adapted lexicon which is a combination of both
extension methods.

LCMU L1 L2 L3

DAMP test 17.01 16.52 15.85 15.49
NUS read 9.83 9.35 9.65 9.40
NUS sing 11.57 10.61 10.30 9.80

TABLE IV: WERs of different lexicon variants

These initial results show that proposed lexicon extension
methods are overall beneficial for sung word recognition,
although L1 resulted in rather more marginal improvement
compared to L2. Combining both extension methods achieved
the best performance with a relative improvement of 8.24%
WER w.r.t to LCMU .

Further in Table V, we provide the word and character
recognition results where the main comparison is between the
recognition performances using the standard CMU dictionary
and our singing-adapted version (L3), in terms of the error
(ER), substitution (S), insertion (I), deletion (D) rates ex-
plicitly. The singing-adapted dictionary performs consistently
better than the speech dictionary even though it can be
considered a modest improvement. Note that most of the
improvements come from the reduced number of deletions,
while the improvement in insertions is generally marginal.

LCMU L3

ER S I D ER S I D

word
DAMP test 17.21 10.67 1.43 5.66 15.49 10.73 1.53 3.12
NUS read 10.51 7.52 1.07 1.91 9.40 6.53 1.07 1.80
NUS sing 13.19 8.60 1.63 2.95 9.80 6.90 1.26 1.54

character
DAMP test 11.41 4.78 1.85 4.79 9.41 4.25 1.63 3.53
NUS read 5.57 2.73 1.38 1.47 5.11 2.54 1.11 1.36
NUS sing 7.05 3.02 1.58 2.33 6.14 3.03 1.36 1.75

TABLE V: Word and character error rates using standard
(L CMU) and singing-adapted (L sing) pronunciation dictio-
naries.

According to Table VI, L3 shows more than absolute 5%
lower ER on singing data. Less words are substituted and
deleted using L3. The vowel recognition rate is obtained via

4The data set is available for research upon request at
https://ccrma.stanford.edu/damp.
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LCMU L3

ER S D ER S D

word (ending with consonants D,DH,T,Z)
DAMP test 22.84 13.06 7.78 17.67 10.15 7.21
NUS read 9.74 8.82 0.91 9.01 7.90 1.10
NUS sing 14.01 7.76 5.73 7.94 5.73 2.21

vowel
DAMP test 13.20 6.47 6.72 9.80 5.59 4.21
NUS read 4.02 2.44 1.58 3.99 2.55 1.44
NUS sing 7.23 2.98 4.26 6.71 3.03 3.68

TABLE VI: Error analysis w.r.t omitted consonants and vowels

comparing vowels in the human phoneme annotations and the
phonetic transcript of the recognizer. The phonetic transcript
is obtained similarly as explained in Section 3. The singing-
adapted dictionary also performs consistently better than the
speech version with regards to the vowel recognition rate
although the improvement in the speech data is marginal,
similarly for its response to words ending with low-confidence
consonants. This shows that the adaptation is more singing
specific, however the improvement is rather modest.

There are further possibilities for adapting the pronunciation
model to singing. New alternative pronunciations may be gen-
erated via a statistical analysis of the interchange (substitution)
of phonemes between speech and singing. Note that these
substitutions need to be considered as context-dependent via
observing the neighbouring phonemes for the instances of
substitution. Additionally, pronunciation probabilities could
be extracted from the training data which is reported to be
beneficial for word recognition [27].

VII. CONCLUSION

This paper presents a computational approach for an in-
depth analysis on the pronunciation differences between
singing and speech. The proposed confusion analysis is uti-
lized in identifying systematic pronunciation variances on the
phoneme-level. We proposed a new singing-adapted version
of the standard CMU dictionary by adding alternative word
pronunciations based on the findings of our analysis. We report
the best WER scores for ALT from monophonic recordings
using an n-gram language model. The error analysis validates
our approach being consistently beneficial for sung word
recognition. We have publicly shared sentence-level manual
annotations on the NUS Sung and Spoken Lyrics Corpus to be
used as a new benchmark evaluation set for lyrics transcription
in monophonic recordings.5
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