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Abstract— Advancements in deep learning have resulted in
new techniques to address sophisticated audio processing tasks,
such as sound localization and recognition. However, supervised
training of deep neural networks (DNNs) requires a significant
amount of training data. Existing datasets are either recorded or
allow synthetic recordings through impulse responses (IRs) via
convolution. Recorded datasets often lack sufficient and versatile
material for supervised DNN training. On the other hand,
impulse response databases allow large scale dataset creation,
provided that suitable IRs are available. However, existing IR
datasets do not cater to the data requirements of moving and
crossing sources problem in sound localization, due to insufficient
angular resolution. This work introduces a versatile room IR
dataset to address this problem. Various diverse environments
such as office rooms, meeting rooms, corridor, and an anechoic
chamber are chosen for the data collection. The chosen rooms
have varying characteristics, such as reverberation times (T60)
and volumes. The data is collected by placing the speaker at
three different distances from a rotated microphone array, thus
mimicking the moving source condition. Direction of arrival
(DoA) estimation is performed by spatializing the sound signal
with the collected IRs to verify their quality. The dataset will be
publicly available.

Index Terms—sound localization, deep learning, direction of
arrival, impulse responses

I. INTRODUCTION

The ability to solve complex audio tasks such as sound
localization and recognition using DNNs [1]–[4] paved the
way for the creation of several datasets. Each dataset varies
in size and the objective which it aims to achieve. New
algorithms and techniques, such as transfer learning and semi-
supervised learning, reduce data requirements for training
DNNs. However, existing datasets are not fully adequate for
localizing moving and crossing sound sources. This work aims
to tackle these needs by enabling large scale and versatile
creation of labeled spatial audio data for supervised training
of DNNs.

Analysis of various IR datasets [5]–[12] indicates a number
of data needs left unaddressed by them. Firstly, diverse acous-
tic conditions enable the performance of various experiments,
yet most of the collected data is limited to an average of
three or four different spaces – often not including anechoic
environments, for instance. Secondly, crossing and moving
source problems require non-static receivers or sources, but
existing IR datasets exhibit little to no variation in microphone
and speaker positions. Thirdly, supervised training of DNNs
requires large and diverse datasets, which may be obtained
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by collecting data with fine angular resolution (and thus more
spatial configurations).

To address these issues, the Tampere University Rotated
Circular Array impulse response (TUNI-RCAIR) dataset offers
IRs with fine resolution angular data collected from different
acoustic conditions. IRs are collected from spaces which vary
in dimensions and reverberation times (T60). The recording
environments are three office rooms, two meeting rooms,
a corridor and an anechoic chamber. Varying reverberation
conditions provide a parallel corpus of IRs, i.e. the same
spatial configurations are available in varying rooms and
distances. A static loudspeaker is used as the source and a
rotating microphone array on a tripod acts as the receiver,
which mimics the impression of a moving source by capturing
the direct path wavefront from multiple orientations. Three
different IR capture distances between the microphone array
and the loudspeaker are involved during the data collection.
The recordings are collected over a range of 180◦ for every
5◦. Fine resolution in sound source angles is thus achieved
by rotating the microphone array, which provides IRs aimed
at simulating moving sources. The dataset contains 777 IRs
for the array (37 different angles, 3 distances and 7 rooms;
5439 IRs in total, if we consider the seven microphones
individually).

With the work presented in this paper, one can generate
the data required for moving sources and crossing sources
scenarios to research these difficult problems with the aid of
supervised DNNs. This IR database will be useful in solving
challenging sound localization problems, such as moving
sources and multiple moving sources, which are still identified
as current challenges [10].

The paper is divided into the following sections: Section II
presents related works and makes comparisons with the TUNI-
RCAIR dataset. Section III describes the data collection setup
and environments in detail. Section IV details the evaluation
of the IR dataset in terms of DoA estimation error through
spatialization with audio signals. The final section presents
brief conclusions and future work.

II. RELATED WORKS

The impulse response dataset finds its application in tasks
such as speech recognition, speech enhancement, and sound
localization. There are multiple impulse response datasets,
in which the impulses are collected from different recording
environments. Some of the existing IR datasets and the tasks
they aim to address are described below. A brief overview is
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provided about the utilized recording equipment, microphone
and speaker placement, as well as the intended purpose of the
dataset.

• RWCP Sound Scene Database [5] – Data collected
using 14-channel linear and 54-channel spherical micro-
phone arrays and Diatone DS-7 loudspeaker, with B&K
type 4128 head torso used as the source. This dataset
was designed to simulate sounds in different acoustic
environments. For the IRs, consistent angular data was
collected from five different rooms with angles between
[50◦,. . . ,130◦] in 20◦ steps via a linear microphone array.
The initial distance between the source and the speaker
was two meters.

• Reverb challenge dataset [6] – Consists of both real
and simulated data collected from three different rooms
using omnidirectional microphones and loudspeaker. Tar-
geted for speech enhancement and automatic speech
recognition tasks. Eight-channel circular array was used
for data collection and the loudspeaker position was
varied twice across the rooms. There are six unique
microphone/speaker positions. No angular resolution is
involved in this dataset.

• DCASE dataset [7] – As a part of sound event detection
and localization challenge in the DCASE series. Con-
sists of real impulse responses collected from five large
indoor spaces. A spherical microphone array was used
for recording the IRs. The distance between the source
and speaker was set to one and two meters respectively.
The highest resolution of speaker angles is 10◦, between
[-40◦,. . . ,40◦] degrees.

• Center for Digital Music (C4DM)-RIR dataset [8]
– Includes omnidirectional impulse responses collected
from three different rooms. Data collected using om-
nidirectional DPA 4006 microphones and a B-format
microphone. The microphones were moved to different
positions across the rooms used for data collection, with
468 positions in total. Various angles were also employed
during data collection.

• Acoustic Characterisation of Environment corpus
(ACE) [9] – Data collected from seven different rooms
using two-channel laptop, notebook, three-channel mo-
bile phone, 32-channel Eigen microphone and eight-
channel linear array microphones. Targeted at speech
recognition and enhancement tasks. The microphone po-
sitions were set at two different distances in each room.
This dataset was designed to identify room reverberation
characteristics.

• BUT Speech@FIT Reverb Database [11] – IRs were
collected from nine different rooms, mainly for speech
recognition and speech enhancement tasks. Different
microphone setups were involved in data collection:
mounted on walls, placed over a table, placed on the ceil-
ing, etc., since the focus was towards speech recognition.
Two types of microphones were used for data collection:
omnidirectional microphone and electret condenser mi-

crophone module. The loudspeaker position was varied
in the range of three to ten positions across the rooms
used for data collection.

• Multichannel Impulse Response Database [12] – Im-
pulse responses were collected from a single room at the
BIU acoustics lab. However, the room has configurable
reverberation levels. Three different levels were chosen
for data collection. The receiver and source were, re-
spectively, eight AKG CK 32 with three different array
combinations and Fostex 6301BX loudspeaker arrays.
The position of the sources varied with 15◦ steps in the
range [-90◦,. . . ,90◦]. This database mainly targets source
separation tasks.

In addition to these datasets there are binaural IR datasets,
which involve the collection of Head Related Impulse Re-
sponses (HRIR) and Head Related Transfer Function (HRTF),
their frequency domain counterpart.

In the Aachen Impulse Response Database (AIR) [13]
dataset, binaural IRs were collected using HMS2 artificial
head by head acoustics in four different rooms. In the CIPIC
[14] dataset, HRTF was collected from 45 different sub-
jects from a single room. ER-7C (Etymotic Research) probe
microphone and an array of Bose loudspeakers, placed at
different positions, were used for data collection. Azimuth
was varied between [-45◦,...,45◦], in 5◦ intervals, by moving
the loudspeakers. The RIEC [15] dataset consists of HRTFs
collected from 105 different subjects in an anechoic chamber.
Angular resolution in terms of azimuth was set to 5◦ for the
range of [-180◦,...,180◦]. FG3329, Knowles microphones and
Fostex loudspeaker array were used for collecting HRTFs.
In the LISTEN [16] dataset, HRIRs were collected in an
anechoic chamber. TANNOY system 600 was used as the
source and B&K omnidirectional microphone type 4149 was
used to collect the IRs. The distance between the source and
the receiver was 0.5 m.

Table I compares the datasets discussed above to the TUNI-
RCAIR dataset. The datasets are compared on the basis of
number of spaces used, distance range between the source and
speaker, and the angular range in which the microphones or
speakers were varied. The unique variations in the microphone
and speaker positions are also shown, counting the microphone
arrays as a single entity rather than as individual microphones.
Unique variations refer to the change in microphone position
or the speaker position, while collecting the impulse responses.
The table also highlights whether angular resolution is used
for data collection. The comparison clearly highlights the
need for an IR dataset with fine angular resolution, collected
from different acoustic environments, which the TUNI-RCAIR
dataset addresses.

III. DATA COLLECTION AND SPACE CHARACTERISTICS

This section describes the setup of the data collection and
the spaces used for it.
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TABLE I: Comparison of impulse response datasets. Distance range represents the range of distances between the
speaker/source and microphone array/receiver. Microphone/Speaker positions indicates unique changes in the positions of
microphones and/or the loudspeaker across all the recording environments. The microphone array is regarded as a single entity.
Angle range refers to azimuth angles. NA denotes Not Applicable

Dataset Rooms Distance range (m) Microphone/Speaker positions Angular resolution (deg◦) Angle range (deg◦)
AIR 4 0.5 – 10.2 18 NA NA

RWCP 5 2 25 20° 50° – 130°
Reverb 3 0.5 – 2 6 NA NA
DCASE 5 1 – 2 504 10° -40° – 40°

C4DM-RIR 3 2 – 12 468 NA NA
ACE 7 0.5 – 2 14 NA NA

BUT Speech@FIT Reverb 9 0.5 – 15 41 NA NA
Multichannel IR database 3 1 – 2 234 15° -90° – 90°

TUNI-RCAIR 7 0.7 – 2.1 777 5° -90° – 90°

A. Data collection setup

The microphone array consists of seven microphones, with
the first one in the middle and the other six microphones
placed on a circle of diameter 8 cm. The array setup is similar
to UMA-8 [17] and is closer to the microphone arrays used
in latest smart speakers such as Amazon Echo [18]. This
setup is connected to a step motor, controlled by the Arduino
stepper library. The step motor is mounted on Raspberry Pi
and connected to a laptop. The Raspberry Pi is also connected
to an external power source running the step motor. The step
motor and the microphone array are placed over a tripod. The
microphones are connected to OctaMic – RME audio interface
for pre-amplification. Fireface UFX (RME) is used as an ADC
connected to the OctaMic. DPA 4060 microphones act as the
receiver and a Genelec 8010A loudspeaker is the source in this
setup. Figure 1(a) represents the microphone array mounted
on a step motor. The individual microphones are numbered
for identification.

The source speaker and the receiver microphone array are
kept at three different distances: 0.7 m, 1.4 m, and 2.1 m.
The Arduino stepper library is used to control and change
the step motor resolution. Maximum Length Sequence (MLS)
[19] signal with 48 kHz sampling rate is used as the excitation
signal to generate the IRs. The distance between the receiver
and the source speaker is calculated from the central micro-
phone. The microphone array is rotated from -90◦ to 90◦ at a
fine resolution of 5◦ at a time and the recordings are captured
for each angle. When microphones 1 and 2, with coordinates
[0,0,0] and [40,0,0] respectively, are facing the loudspeaker,
the angle between the source and the receiver is 0◦. Refer to
Table II for individual microphone coordinates.

Figures 1(b), 1(c), and 1(d) represent the microphone array
and loudspeaker positions for the angles -90◦, 0◦, and 90◦.

(a) Microphone array (b) -90◦ (c) 0◦ (d) 90◦

Fig. 1: Microphone array with each microphone numbered.
Angle specified between microphone 1 and loudspeaker.

B. Spaces used for data collection

Seven different spaces used for data collection are described
below and displayed in Figures 2(a) – 2(g).

1) Audio Lab (ALB) – A studio-like setup with some
furniture and lights. It falls under the category of low
reverberation but not as low as an anechoic chamber.

2) Office Room-1 (ORA) – A typical work environment in
the university campus. This work space contains tables,
sofa, and chairs.

3) Office Room-2 (ORB) – Another type of office setup,
with different dimensions and acoustic characteristics
than Office Room-1.

4) Small Meeting Room (SMR) – One of the smallest
places used for data collection. It is highly reverberant
in nature. It contains a table and cupboards.

5) Large Meeting Room (LMR) – The Large Meeting
Room is bigger than other rooms from which data is
collected. Contains a table, a few chairs and sofas.

6) Glass Corridor (GCO) – IRs are collected from one
of the staircases of the university premises. It is highly
reverberant, the most among the spaces involved in data
collection.

7) Anechoic Chamber (AEC) – IRs are also collected
from an anechoic chamber. It is the least reverberant
of all the spaces involved in data collection.

Table III lists physical dimensions, volumes and reverber-
ation times of the rooms. The volume of each room is the
product of its measured length, width, and height. This is the
empty volume, although all the rooms except for the anechoic
chamber and the glass corridor contain various furniture. The
reverberation time is calculated using Room EQ wizard [20]
software. Logarithmic sine sweep is used as the excitation
signal [21]. Genelec 8010A loudspeaker is used as the source
and Earthworks M30 microphone as the receiver.

TABLE II: Microphone coordinates along x, y, and z axes.

Microphone x-axis (mm) y-axis (mm) z-axis (mm)
1 0 0 0
2 40 0 0
3 20 30 0
4 -20 30 0
5 -40 0 0
6 -20 -30 0
7 20 -30 0
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(a) Audio Lab (b) Office Room-1 (c) Office Room-2 (d) Small Meeting Room (e) Large Meeting
Room

(f) Glass Corridor (g) Anechoic Chamber

Fig. 2: Data collection spaces.
Space ID Dimensions (m) Volume (m3) Reverberation Time T60 (ms)

Audio Lab ALB (2× 2.3× 2.6) 11.96 270
Office Room-1 ORA (3.9× 4.9× 3.2) 61.15 486
Office Room-2 ORB (2.7× 5.1× 3.2) 44.06 314

Small Meeting Room SMR (2.5× 3.7× 2.5) 23.13 416
Large Meeting Room LMR (6.6× 5.2× 3.2) 109.82 319

Glass Corridor GCO (7.3× 2.7× 3.4) 67.01 1700
Anechoic Chamber AEC (7.8× 7.8× 7.8) 474.56 60

TABLE III: Spaces used for data collection and their characteristics. Dimensions are expressed as (width×length×height).

IV. EVALUATION OF THE DATASET

The quality of the recordings was checked by generating and
plotting both impulse and frequency responses. In addition to
the plots, sanity checks were performed on the generated IRs.
Using the collected IRs DoA estimation was performed to un-
derstand the collected data and identify any faulty recordings
(e.g. due to external disturbances).

The estimation was performed through spatializing speech
or music signals by convolving them with the collected IRs.
This process was done for each room for all the different
distances involved in data collection. Only the direct path
from the impulse response was used for spatialization. White
Gaussian noise was spatialized with the collected IRs across all
rooms and distances. After the spatialization, the appropriate
segment of the convolved data was chosen. Time Difference
Of Arrival (TDOA) was estimated for each microphone pair
combination using Generalized Cross-Correlation with Phase
Transform (GCC-PHAT) [22]. The TDOA value is obtained
as the delay that maximizes the GCC-PHAT function. Based
on the array geometry of Table II and the estimated time
delays, the DoA was estimated using Steered-Response Power
algorithm with Phase Transform (SRP-PHAT) [23]. Before the
recordings were collected, the alignment between the micro-
phone array and the speaker had been performed manually.
Once the DoA was obtained for a particular recording envi-
ronment, the alignment bias was identified by comparing the
actual and estimated DoA and finding a value that minimized
their offset.

Table IV represents the bias and error between actual and
estimated DoA across all distances for the rooms. Figures
3(a), 3(b), and 3(c) depict the direct path IR values across
all distances and rooms for microphone-2. Refer to Fig. 1(a)
for the microphone array geometry and numbering. From the
plots one could notice a curve denoting the rotating array. The
lower parts of the images show sound reflections observable
as additional curvatures. When the loudspeaker is close to the
wall, the additional reflections can be seen in Figures 3(b) and
3(c), especially in the Small Meeting Room, owing to its size
and reverberations.
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(a) Distance – 0.7 meters
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(b) Distance – 1.4 meters
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(c) Distance – 2.1 meters

Fig. 3: IR values for direct path and first reflections for micro-
phone 2 at different distances for array angles [−90◦, . . . , 90◦].
The order of the rooms is Audio Lab, Office Room-1, Office
Room-2, Small Meeting Room, Large Meeting Room, Glass
Corridor, and Anechoic Chamber.
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V. CONCLUSION

The main purpose of this work was to create a robust
impulse response dataset. Although there are multiple existing
IR datasets, our work addresses the lack of datasets for sound
localization tasks, including moving sources and crossing
sources. The spaces used for data collection vary in dimensions
and acoustic properties such as reverberation time. Given
the large training material requirements of supervised deep
learning, there is a need to generate large amounts of data.
The TUNI-RCAIR dataset allows simulating moving source
data in versatile rooms and different distances. Future work
involves collecting data from new spaces and increasing the
size of the dataset.
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[1] Soumitro Chakrabarty and Emanuël AP Habets, “Multi-speaker doa es-
timation using deep convolutional networks trained with noise signals,”
IEEE Journal of Selected Topics in Signal Processing, vol. 13, no. 1,
pp. 8–21, 2019.

[2] Nelson Yalta, Kazuhiro Nakadai, and Tetsuya Ogata, “Sound source
localization using deep learning models,” Journal of Robotics and
Mechatronics, vol. 29, no. 1, pp. 37–48, 2017.

[3] Weipeng He, Petr Motlicek, and Jean-Marc Odobez, “Deep neural
networks for multiple speaker detection and localization,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 74–79.

[4] Sharath Adavanne, Archontis Politis, and Tuomas Virtanen, “Lo-
calization, detection and tracking of multiple moving sound sources
with a convolutional recurrent neural network,” arXiv preprint
arXiv:1904.12769, 2019.

[5] Satoshi Nakamura, Kazuo Hiyane, Futoshi Asano, Takanobu Nishiura,
and Takeshi Yamada, “Acoustical sound database in real environments
for sound scene understanding and hands-free speech recognition,” in
LREC, 2000.

[6] Keisuke Kinoshita, Marc Delcroix, Sharon Gannot, Emanuël AP Habets,
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