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∗Università degli Studi di Firenze, Firenze, Italy, Email: ∗{grazianoalfredo.manduzio,giorgio.battistelli,luigi.chisci}@unifi.it
†NATO STO Centre for Maritime Research and Experimentation, La Spezia, Italy, Email: †{name.surname}@cmre.nato.int

Abstract—In this paper we address the problem of dynamic
source localization in spatially distributed systems governed by
Partial Differential Equations (PDEs) which aims to detect and
localize a mobile source from a passive array of acoustic sensors.
We consider an underwater environment where the space-time
dynamics of the source-induced field is modeled by a finite-
element (FE) approximation of the full acoustic wave PDE. Based
on recent advancements in large-scale state estimation of PDE
systems, we present a novel Multiple Model (MM) filtering
approach to underwater dynamic source localization. The pro-
posed framework sequentially estimates the acoustic field and the
source location by running in parallel a bank of FE-based field
estimators, each conditioned to the source being placed in a given
element of the FE mesh. We adopt the Ensemble Kalman Filter
(EnKF) implementation for computationally efficient estimation
of the large-scale acoustic field. The effectiveness of the proposed
Finite-Element Multiple Model Ensemble Kalman Filter (FE-
MM-EnKF) is demonstrated via simulation experiments in the
underwater acoustic environment.

I. INTRODUCTION

Due to the special characteristics and complexity of the
underwater environment, localization and tracking of a moving
acoustic source using a passive array system of acoustic sensors
is a challenging task, especially in low signal-to-noise ratio
(SNR) scenarios, where the source can be difficult to detect
[1]. Conventional signal processing methods based on matched-
field processing (MFP) [2] and bearing-only tracking (BOT)
[3]–[5] may not be able to detect such low-observable targets.
Source localization using common MFP methods is effective
when the source is stationary and the propagation model
is completely known. However, it can be highly degraded
or precluded in the case of noisy or uncertain sources and
environmental parameters [6]. Source motion is an additional
factor of performance degradation, for which ad-hoc extensions
of MFP [7]–[9] need to be taken into account when dealing with
dynamic sources. On the other hand, classical BOT methods can
only exploit thresholded bearing measurements. In low SNR
environments the acoustic signals are distorted by ambient noise
and are more likely to be undetected using conventional BOT
methods since the information contained in the measurements
may be irreversibly discarded after the thresholding process
[10]–[12].

In order to provide reliable and faster detection/localization
of a moving source, the proposed method explicitly takes into
account the space-time acoustic field dynamics modeled by an
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Fig. 1: Example of dynamic source localization in an under-
water acoustic environment.

FE approximation of the full acoustic wave PDE. This allows
the original infinite-dimensional initial-boundary value problem
to be transformed into a finite-dimensional discrete-time linear
system, with state vector consisting of the field values in the
vertices of the FE mesh and input matrix depending on the
source location. Based on recent advancements in numerical
simulation [13] and large-scale dynamic state estimation of
PDE systems [14], [15], we developed a novel Finite-Element
Multiple Model Ensemble Kalman Filter (FE-MM-EnKF)
for underwater dynamic source localization. The proposed
framework sequentially estimates the acoustic field and the
source location by running in parallel a bank of FE-based
field estimators implemented in the EnKF [16] fashion, each
conditioned to the source being placed in a given element of
the FE mesh, plus a null hypothesis representing the absence
of the source.

The proposed method can enhance the detection, localization,
and tracking performance of low-observable underwater targets
by exploiting FE-based acoustic field estimation directly from
raw acoustic pressure measurements. Further advantages of the
proposed framework with respect to conventional BOT methods
include the fact that i) it does not require an intermediate step of
bearing estimation; ii) it leads to a (large-scale) linear instead of
nonlinear estimation problem; iii) it incorporates an FE model
of underwater acoustic propagation for advanced numerical
simulation in the time domain.
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II. PROBLEM FORMULATION

Consider the two-dimensional infinite oceanic waveguide Ω
depicted in Fig. 1, bounded from above by a flat free surface
ΓU and from below by a possibly irregular seabed ΓD. Define
a Cartesian coordinate system Oξη, with the origin O on ΓU

and the vertical axis η oriented toward the seafloor, and denote
p ∈ Ω the position vector and t ∈ R+ the time variable. Let
c̄(p) and ρ̄(p) be the space-dependent ambient speed of sound
and water density, respectively. Suppose that a perturbation of
pressure x(p, t) is induced in the water column by a moving
point source f(p, t). The goal is to detect the presence of the
sound emitter and jointly estimate its location as well as the
source-induced acoustic field x(p, t), given a certain number of
pointwise-in-space-and-in-time measurements. To this end, the
propagation of the perturbation of pressure x(p, t) is assumed
governed by the generalized wave equation [1]

1

ρ̄c̄2
∂2x

∂t2
−∇ ·

(
1

ρ̄
∇x
)
− f

ρ̄
= 0, (1a)

with initial conditions

x(p, t = 0) = 0,
∂x

∂t
(p, t = 0) = 0, ∀p ∈ Ω, (1b)

and boundary constraints

x = 0 ∀t ∈ R+,∀p ∈ ΓU ,

∇x · nD = 0 ∀t ∈ R+,∀p ∈ ΓD.
(1c)

The forcing term is nil in the absence of sources and modeled
as f(p, t) = s(t) δ

(
p− p0(t)

)
otherwise, where s(t) is a

temporal envelope, p0(t) is the instantaneous position of the
source, and δ is the Dirac delta function.

III. FINITE-ELEMENT DISCRETIZATION AND TIME
INTEGRATION

Problem (1) is solved numerically through the FE method.
To this end, the infinite domain Ω is first truncated along
the horizontal axis, as illustrated in Fig. 1. The resulting
computational domain Ωd is delimited by the piecewise closed
line ΓU ∪ ΓR ∪ ΓD ∪ ΓL and spans the physical region of
interest. Let n denote the outward pointing unit normal on the
boundary of Ωd. For the acoustic waves to leave the domain
without significant spurious reflections, the following radiation
condition is applied [1, Chapter 7]:

1

ρ̄
∇x · n = − 1

ρ̄c̄

∂x

∂t
, ∀t ∈ R+,∀p ∈ ΓL,ΓR. (2)

The FE method is based on the following weak or integral
formulation of problem (1), that can be obtained by multi-
plying (1a) by a generic space-dependent test function ψ(p),

integrating over Ωd, and by enforcing the boundary constraints
(1c) and the radiation condition (2):

d2

dt2
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ψxdp
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ρ̄c̄
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dt

∫
ΓR

ψxdp = 0.

(3)

In the FE method, the pressure field x(p, t) is approximated
by a linear combination of NV known spatially-varying basis
functions Φj(p), j = 1, . . . , NV ,

x(p, t) '
NV∑
j=1

Φj(p)xj(t) = ΦT (p)x(t), (4)

where xj(t) is the j-th unknown expansion coefficient, and
Φ(p) ∈ RNV and x(t) ∈ RNV are the column vectors

Φ(p) , col{Φj(p)}NV
j=1, x(t) , col{xj(t)}NV

j=1. (5)

The choice of the basis functions is a key issue of the FE
algorithm and is directly linked to the type of elements. In the
present implementation, the computational frame Ωd is divided
into a set of NE non-overlapping triangles Ωd =

⋃NE

e=1 Ωe, e =
1, . . . , NE . This tessellation defines a mesh with NV vertices
pj ∈ Ωd, j = 1, . . . , NV , and each basis function Φj(p) is
defined as a piecewise polynomial of first degree vanishing
outside the elements around pj and such that Φj(pi) = δij ,
where δij is the Kronecker delta. As a result, the j-th expansion
coefficient xj(t) corresponds to the value of the approximation
of the pressure field at the vertex pj .

To compute the NV unknowns xj , j = 1, . . . , NV , expansion
(4) is first introduced in the weak form (3). Then, by replacing
the generic test function ψ with the basis functions, we obtain
the following system of NV ordinary differential equations of
second order in time:

M
d2x

dt2
+ D

dx

dt
+ Kx− f = 0, (6)

where

M ,
∫

Ωd

Φ(p)ΦT (p)

ρ̄(p)c̄2(p)
dp,

D ,
1

ρ̄c̄

∣∣∣∣
p∈ΓL

∫
ΓL

Φ(p)ΦT (p) dp

+
1

ρ̄c̄

∣∣∣∣
p∈ΓR

∫
ΓR

Φ(p)ΦT (p) dp,

K ,
∫

Ωd

∇Φ(p) · ∇ΦT (p)

ρ̄(p)
dp,

f(t) , s(t)

∫
Ωd

Φ(p)δ(p− p0(t))

ρ̄(p)
dp =

s(t)Φ(p0(t))

ρ̄(p0(t))
(7)

with mass matrix M ∈ RNV ×NV , damping matrix D ∈
RNV ×NV , stiffness matrix K ∈ RNV ×NV , and forcing term
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f(t) ∈ RNV . Then, by regularly discretizing in time (6) with
sampling interval ∆t such that tk = k∆t, k ∈ N0, and by
computing the approximations xk+1 and ẋk+1 of x and its
derivative dx/dt at time instant tk+1 through the Newmark’s
method [1], the following discrete-time linear state-space model
is obtained:

zk+1 = A zk + B uk + wk (8)

where zk , [xT
k ẋT

k ]T , uk , [fTk fTk+1]T , fk = f(tk), while the
state transition matrix A ∈ R2NV ×2NV and, respectively, the
input matrix B ∈ R2NV ×2NV are defined as follows

A = G

I− ∆t2

2
(1− 2β)M−1K ∆tI−

∆t2

2
(1− 2β)M−1D

−∆t(1− γ)M−1K I−∆t(1− γ)M−1D

 ,

B = G

∆t2βM−1 ∆t2

2
(1− 2β)M−1

∆tγM−1 ∆t(1− γ)M−1

 ,

G =

I + ∆t2βM−1K ∆t2βM−1D

∆tγM−1K I + ∆tγM−1D

−1

,

where β and γ are non-negative parameters that determine
the numerical accuracy and the stability properties of the
time integration scheme, which is second-order accurate and
unconditionally stable for β = γ = 0.5 [1]. Finally, note that
wk in (8) is a process disturbance modeling also approximation
errors that originate from the above space-time discretization.

IV. DYNAMIC SOURCE LOCALIZATION

Based on the FE model of underwater acoustic propagation
presented in Section III, we developed a source localization
system that sequentially i) predicts the acoustic pressure field
through the finite-dimensional approximation of the full wave
equation; ii) assimilates the available observations collected
by an array of acoustic sensors to correct the estimates of the
acoustic field; iii) runs detection and localization strategies
to recursively detect and estimate the position of a mobile
acoustic source from the estimated source-induced field.

A. Multiple model approach

The key idea is to incorporate the source detection and
localization processes into a Multiple Model (MM) tracking
approach [3] to field estimation that assumes the evolution
of system (8), at each time step, obeys to one of a finite set
of possible modes of operation or propagation models. This
makes it possible to match each hypothesis of the source being
located in a generic element of the mesh to a distinct operating
mode of the acoustic system, plus a null hypothesis accounting
for the absence of the source in the monitored area.

System (8) for each mode j = 1, 2, ..., NE is then governed
by the following mode-matched model associated to the
hypothesis that a dynamic source is located in element Ωj :

zk+1 = Azk + Bjϕk + wk

yk = C zk + vk
(9)

where yk is the vector of all measurements collected from an
array of S sensors with noise vector vk independent of zk and
representing the effect of undesired signals (e.g., ambient or
thermal noise), ϕk contains the 2(d+ 1)-dimensional column
vector of stacked coefficients Φj

`(p
0
k), ` ∈ Vj , d being the

dimension of the spatial domain, while Bj ∈ R2NV ×2(d+1)

properly selects the columns of B corresponding to the nodes
of element Ωj , such that Buk = Bjϕk. It is worth noting
that in order to be able to detect new sources, an extra source-
free operating mode j = 0, based on the assumption that
no point source is present, needs to be added to the set of
NE +1 possible modes of the MM algorithm. The joint source
position and field estimation is carried out by constructing an
augmented system, as the aggregate of the original system (9)
and a suitable model for the time evolution of the unknown
input ϕk, which takes the following form for j = 1, 2, ..., NE[

zk+1

ϕk+1

]
=

[
A Bj

0 I

] [
zk
ϕk

]
+

[
wk

ςk

]
yk = [C 0]

[
zk
ϕk

]
+ vk

(10)

whereas, for j = 0

zk+1 = Azk + wk, yk = C zk + vk. (11)

Note that in (10) the dynamics of the source-induced forcing
terms in ϕk are assumed to vary slowly with time and, hence, to
follow a discrete-time random walk. Given that the source may
move within the domain, i.e. the correct operating mode may
switch over time, it is convenient to employ the Interacting
Multiple Model (IMM) [3], which allows for mode jumps,
limiting at the same time the number of hypotheses to the
number of filters.

B. Finite-element multiple model ensemble Kalman filter

For dynamic source localization, we run an IMM estimator
for the system (10) with mode-to-mode transitions modelled by
means of a homogeneous Markov chain with known transition
probabilities

πij = prob (νk = j | νk−1 = i) , i, j ∈ {0, 1, ..., NE}
(12)

where νk is the modal state (i.e. the mode in operation) at
time k. At the beginning of each sampling interval, the NE +1
filters interact in a mixing step which produces the mixed initial
conditions for field estimation. The recursion of the proposed
FE-MM-EnKF can be summarized as follows.

1. Mixing probability update: in order to calculate the mixed
initial conditions, the mixing probabilities are first updated
as follows

µ
j|i
k−1|k−1

4
= πij µ

i
k−1

/ NE∑
`=0

π`j µ
`
k−1 (13)
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2. Mixing: the mixed field estimates and covariances are
computed as

ẑ0j
k−1|k−1 =

NE∑
i=0

ẑik−1|k−1µ
i|j
k−1|k−1

P0j
k−1|k−1 =

NE∑
i=0

µ
j|i
k−1|k−1

[
Pi

k−1|k−1 + z̃ij(z̃ij)T
]

(14)

where ẑik−1|k−1 and Pi
k−1|k−1 denote respectively the

mode-conditioned field estimates and covariances at time
step k− 1. Note that z̃ij in (14) is the spread of the means
defined in [3] as z̃ij = ẑik−1|k−1 − ẑ0j

k−1|k−1.

3. Mode-matched ensemble Kalman filtering: each mode-
matched filter carries out the prediction and correction steps,
processing the entire vector yk of gathered measurements.
The parallel mode-matched filters are implemented in the
EnKF fashion for computationally efficient field estimation
that implies large-scale processing of the finite-element
system. The bank of EnKFs produces an ensemble of q
augmented state estimates χ̂j

k|k , [ẑj
T

k|k ϕ̂
jT

k|k]T with sample
error covariance Pj

k|k for each mode j ∈ {0, 1, . . . , NE},
q being the ensemble size. In addition, assuming Gaussian
noises, the mode likelihoods are evaluated as

Λj
k = N (ζjk; 0,Sj

k), j = 0, 1, . . . , NE (15)

where ζjk
4
= yk −Cẑjk|k−1 is the innovation at time k of

mode j, and Sj
k the associated covariance.

4. Mode probability update: assuming that mode transitions
are modeled by (12), the mode probabilities are computed
as follows

µj
k =

1

c1
Λj
k

NE∑
i=0

πij µ
i
k−1 (16)

where c1 =
∑NE

j=0 Λj
k

∑NE

i=0 πij µ
i
k−1 is the normalization

constant.
5. Source localization: At the end of each cycle, the mode
j∗ with highest probability, i.e. j∗ = arg maxj µ

j
k is

considered as the operating one and the associated mode-
conditioned estimate is directly used for field estimation.
Then, exploiting the structure of the FE approximation, the
source location can be estimated as a convex combination of
the position of the vertices of Ωj∗ matched to the estimated
operating mode, i.e. p̂0

k =
∑

i∈Vj∗ ϕ̂
i
k pi, where ϕ̂i

k denotes

the entry of ϕ̂j∗

k|k corresponding to vertex i of Ωj∗ .
Note that the computational complexity of the proposed FE-
MM-EnKF mainly involves the number of nodes NV with 2NV

as the dimension of the acoustic field, the ensemble size q, the
number of finite elements NE corresponding to NE + 1 mode-
matched EnKFs, and the number of sensors S. In particular, the
complexity of a single mode-matched EnKF is O(nqS), where
n = 2(NV + d + 1), computationally cheaper than standard
Kalman filters if n is very large and q � n, while the mixing
steps of the IMM implementation yield NE + 1 hypotheses
with NE + 1 mode-matched filters.

V. SIMULATION RESULTS

We simulated a moving source transmitting a signal of
frequency f0 = 30 Hz for K = 500 time steps (with
time integration step ∆t = 0.01 s) in a shallow water
environment with an isospeed water column (c = 1500 m/s,
ρ = 1000 kg/m3) of 25 m depth and 150 m long. The acoustic
pressure field generated by the dynamic source is measured,
with sampling interval Ts = 0.01 s, using a uniform rectangular
array of acoustic sensors (see Fig. 2). For each simulation, we
set the following filter parameters: initial guess of acoustic
pressure x̂1|0 = 0.01 Pa all over the domain, standard deviation
of measurement noise σv = 0.1 µPa, standard deviation of
process noise σw = 0.08 µPa, and ensemble size q = 50. The
mixing probabilities were initialized as uniformly distributed.
The transition probabilities in (12) were chosen as πii = 0.99,
∀i = 0, 1, . . . , NE , with 0.008 and 0.002 probability equally
assigned to all adjacent and, respectively, non-adjacent elements
to the current modal state. To evaluate the performance of
the proposed filter, we considered the following parameters:
number of sensors S = 30, mesh size ratio MSR = 0.8,
which represents the accuracy of the finite-element underwater
acoustic model used by the filter with respect to the ground
truth, and different levels of signal-to-noise ratio. The MSR
is defined as MSR , Lf/Lg where Lf and Lg are the mean
element size of the finite-element mesh used by, respectively,
the filter and the ground truth simulator. Given the standard
deviation of noise σy at each sensor of the array, the SNR can be
defined as [1, Chapter 10] SNR , 10 log10(

∑K
k=1 SNRk/K)

where SNRk ,
1

S

∑S
i=1 x

2
k,i/σ

2
y is the SNR at time k, and

xk,i is the acoustic pressure on the i-th sensor at time k.
In Fig. 2 we show an example of the actual trajectory of

the source compared to the estimated positions obtained by
applying the proposed FE-MM-EnKF with MSR = 0.8, SNR =
10 dB, and S = 30. We can see the computational domain,
the FE mesh (NV = 97, NE = 150, Lf = 8.75 m), the
uniform rectangular array of sensors, and the source moving
with constant velocity for K time steps and covering 25 m in
range at a speed of 5 m/s. We note that, even if the initial (first
four) estimates are far from the real trajectory, the estimated
trajectory converges to the actual one as soon as the source is
correctly detected and tracked in the exact element of the mesh
(see the performance in terms of mode estimation and mean
absolute error shown respectively in Fig. 3(a) and Fig. 3(b)).
In Fig. 3(a) we show the mode estimation performance where
we can see in particular that the source is detected at each time
step as the estimated mode is such that j∗ 6= 0. Furthermore,
we can accurately predict the element of the mesh where
the source is located, although there are slight delays due
to mode-to-mode transitions. In Fig. 3(b) we show the mean
absolute error of the estimated source position over time, which,
after the initial estimates, remains below 1 m for the entire
simulation. Finally, in Fig. 4 we show the performance of
the FE-MM-EnKF in terms of the time-averaged root mean
square error of the estimated source position (RMSEpos) over
four different levels of SNR. The RMSE in position is defined
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Fig. 2: Simulated environment with MSR = 0.8, SNR = 10 dB, and S = 30: estimated source positions vs ground truth.
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Fig. 4: RMSEpos vs SNR with MSR = 0.8 and S = 30.

as RMSEpos ,
∑K

k=1 RMSEpos,k/K, where RMSEpos,k ,√∑M
j=1(p̂0

k,j − p0
k,j)

2/M is the error at time k, p̂0
k,j and p0

k,j

denote the estimated and, respectively, true source position in
the j-th Monte Carlo run, and M = 100 is the total number
of runs. The localization performance is strong at all levels of
SNR, with the error decreasing as the SNR increases.

VI. CONCLUSIONS

This paper focused on the development of a novel multiple-
model approach to source detection and dynamic localization
based on a finite-element model of underwater acoustic prop-
agation and measurements from acoustic sensors. Simulation
experiments demonstrated the capability of the proposed FE-
MM-EnKF in noisy environments. Future work will explore
the application to real-world underwater complex environments,
and the extension to underwater multi-target tracking.
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