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Abstract—Sound source localization (SSL) is an actively re-
searched topic in the field of multichannel audio signal processing
with numerous practical applications. Since it is used in different
acoustic contexts, ensuring a good generalization of the tech-
niques and models to various acoustic signals and environments
is of great importance. In this paper, we aim to investigate the
influence of different types of sources on the training process of a
model based on a deep neural network (DNN). We present several
training datasets, containing different mixtures of noise, speech
and sound events, and perform a comparative study in which we
test the trained models on distinct target signals. The problem
is analyzed in the context of localizing two simultaneously active
sound sources. Additionally, two data augmentation methods are
incorporated into the framework to verify their impact on model
generalization. The results of experiments performed for two
concurrent sources show the localization accuracy of models
trained with diverse data types. In particular, training using
speech and sound event data or mixtures thereof are shown to
result in localization accuracy increase for a variety of source
types under test.

Index Terms—Sound source localization, multiple source local-
ization, deep neural networks

I. INTRODUCTION

Localization and tracking of acoustic sources is a widely
researched topic [1], with applications ranging from acoustic
monitoring to signal enhancement. Traditionally, the signal
model with geometric plane wave propagation model has
been assumed, and the directions-of-arrival (DOAs) of the
acoustic sources are found by estimating model parameters.
Such approaches make minimal assumptions about the source
signals and do not require training or supervision. Recently,
data-based localization studies have received an increased in-
terest, with promising results in adverse noise and reverberant
conditions [2–6]. Early works have focused on localization of a
single active source, with the problem formulated as regression
[7] or classification [8]. Classification-based approaches, with
output positional probabilities on a pre-defined grid, have an
advantage of naturally handling multiple sources, but for a
high directional resolution in both azimuth and elevation a
large amount of classes is required, making the training cum-
bersome. Regression-based approaches require the network to
have as many regressors as the maximum number of sources to
be localized. The latter approach leverages from an external

activity detector or post-processing to define which part of
the output corresponds to the source activity. Furthermore, the
DoA estimates of multiple sources can be permuted at the
outputs. This can be alleviated to some extent using training
strategies such as the permutation invariant training [9]. One
aspect that so far has not received much attention, in contrast
to the input features [10] or architectural and training loss
choices, is the effect of the source signal on the accuracy of
the DNN-based localization. In principle, localization exploits
inter-channel signal properties, which are independent from
the source signal, and thus the DNN-based localization should
be able to generalize well to the sources that are different from
the ones used in training. This principle has been exploited in
the work of [3], where spatialized noise is used for convenient
training and the performance of the system is evaluated on
speech recordings. Nonetheless, the majority of DNN-based
methods [2, 4] use matched training and testing, in which the
same type of source is used.

In this paper, we investigate the differences in performance
between the models trained with different types of source
signals with the aim to find optimal solutions for distinct test
scenarios. For this purpose, we divide sound sources into three
main categories: noise, speech, and sound events. Noise signals
avoid the need of sample gathering and are the most general
non-informative signal type, providing a good potential for
generalization [11]. Speech combines many properties that are
shared amongst other signal types, containing both harmonic
and noise-like features, whilst showing a transient character
[12]. It is also the most common application scenario. Sound
events are the most diverse type with all kinds of signal
properties, for instance a class can be both noisy or correlated
[13]. To enable realistic conditions, we synthesize the data
by convolving the source signals with simulated impulse
responses for different source-array distances, in rooms with
different reverberation times [14]. In addition, we investigate
whether data augmentation techniques can be used to alterna-
tively improve the generalization of the model [15–17].

The final contribution of this paper is investigation of
the robustness of sound source localization depending on
the diversity of the training data for a scenario with two
simultaneously active sources.
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II. DNN MODEL FOR SOUND SOURCE LOCALIZATION

In this work, we localize two simultaneously active sound
sources using a DNN model. In order to compare the local-
ization accuracy for different types of training and test data,
we apply the same Convolutional Recurrent Neural Network
(CRNN) model across all performed experiments. The CRNN
model has been shown in [2, 18] as well as in our previous
studies [10, 19] to yield a good balance between model
complexity and localization accuracy. The CRNN architecture
adopted in this work is summarized in Table I. Note that we
perform max pooling only across the frequency axis in order to
preserve the temporal resolution of the input features. The final
layer consists of 6 output units representing two DOA vectors,
each containing three estimated Cartesian coordinates of the
vector pointing towards the sound event. Note that the unit-
normalized vectors are used during training. Finally, the output
values are smoothed using a median filter over the 25 frame
window. Regression loss is the well known mean squared error
(MSE).

Similarly to speaker-independent source separation [9],
source-independent localization for more than one source
based on regression can suffer from the permutation problem,
where the estimates may switch outputs from frame-to-frame
or sequence-to-sequence, affecting both training convergence
and overall performance. To avoid such permutation issues, we
apply the so-called frame-level Permutation Invariant Training
(tPIT) [20]. PIT simply compares the combined error of the
outputs for all permutations of outputs and ground truths (2
in our case), and only the combination that produces the
minimum error is selected to perform back-propagation during
the training.

Models are trained using multichannel magnitude spectro-
grams and the sine & cosine values of the inter-channel phase
differences, which have been shown to perform better than
phase spectrograms and equally good to generalized cross-
correlation features in similar settings [10]. In this work, the
complex spectrum is computed using the Short-Time Fourier
Transform with a Hamming window of 40ms length and
50% overlap. The phase features between the i-th and j-th
microphone channels are computed as

SIi,j [n, k] = sin (IPDi,j [n, k]), (1)

CIi,j [n, k] = cos (IPDi,j [n, k]). (2)

The inter-channel phase differences (IPDs) for each (i, j)
channel pair are defined as

IPDi,j [n, k] = arg(Xi[n, k])− arg(Xj [n, k]). (3)

where Xi[n, k] denotes the complex spectrum value,
arg(Xi[n, k]) denotes phase of the spectrum, and n and k
denote the time and frequency indices, respectively. Sines and
cosines of IPDs have been firstly proposed for multichannel
DNN-based speech separation [21] and further investigated for
localization in [10].

TABLE I
CRNN MODEL ARCHITECTURE FOR THE LOCALIZATION OF CONCURRENT

SOURCES.

Layer type Description

2D CNN 64 filters, 3x3, BN, ReLU, MaxPooling x4
2D CNN 64 filters, 3x3, BN, ReLU, MaxPooling x4
2D CNN 64 filters, 3x3, BN, ReLU, MaxPooling x2
Bi-LSTM 64 units, tanh
Bi-LSTM 64 units, tanh

Fully connected 128 units, linear
Fully connected 6 units, linear

In this work, we aim to investigate which types of sound
sources and data augmentation techniques are more effective
when training the DNN-based model for the localization of
simultaneously active sound sources.

III. DATA GENERATION

A. Various Types of Sound Events

To provide a credible comparison of different types of
sources, sufficient amounts of data of a similar type are
required. Hence, we create 7 sets of audio data, differing only
in the type of sound source signals. The first five datasets are
used for training, while the latter are used during the tests:

• Noise-Train: consists of random white Gaussian noise
sources,

• Speech-Train: uses only speech signals from the TIMIT
Acoustic-Phonetic Continuous Speech Corpus, [22]

• Event-Train: consists of 14 individual sound event
classes from the NIGENS dataset [23],

• SN-Train: a mixture of random noise sources and speech
data with 1:1 proportion,

• SNE-Train: a mixture of noise, speech and sound events
signals at 1:1:1 proportions,

• Event-Test: a test set of the same type as Event-Train,
but with a different set of room and DOA combinations,

• Speech-Test: a test set of the same type as Speech-Train,
but with a different set of room and DOA combinations.

Each of the training datasets contains 800 audio files, each
40 seconds long with 24 kHz sampling frequency and 16
bit resolution. The test sets consist of 200 audio files each.
The data is divided into 4 splits to enable fold-wise cross-
validation. Data is created using 1 second long chunks for
each sound source, always with two overlapping sources being
active at the same time. In order to provide a possibly large
and general representation of the localization scenarios, we
simulate a random shoe-box room for each file separately.
The randomized parameters are all physical dimensions of
the room and the reverberation time (RT). To estimate the
RT curve, we simply randomize the values for the 125Hz
and 4kHz frequency bands (denoted as RT125 and RT4k,
respectively) and perform a linear interpolation in between.
Room impulse responses (RIRs) for a tetrahedral microphone
array that consists of four cardioid microphones are simulated
using the image source method [14]. For each room we pick a
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TABLE II
RANDOMIZATION OF PARAMETERS FOR DATA GENERATION.

Parameter Random range

Room width and length [6.0 10.0] m
Room height [2.5 6.0] m

RT125 [0.3 0.9] s
RT4k [0.8 0.98] * RT125

Receiver position (x, y) [20.0 40.0] %
Receiver height [1.0 2.0] m
Source distance [1.5 5.0] m
Azimuth angle [-180.0 180.0] °
Elevation angle [-90.0 90.0] °

random position of the receiver, whereas each individual sound
source is located at a position computed by randomly selecting
the azimuth and elevation angles as well as the distance from
the array. The receiver position is expressed as the percentage
of the room’s width and depth. We also ensure that each source
and receiver are located at least 1 m apart from the walls,
ceiling, and floor. The randomized parameters are the same
for all datasets and are summarized in Table II. Finally, audio
files are synthesized by convolving the signals of each source
with the respective RIRs.

B. Data Augmentation

To answer the question about the actual gain achieved by
utilizing more specific sound sources in the training process,
it should be determined whether this approach shows any
improvement over other data enhancing techniques. Therefore,
apart from comparing different types of data, we study the
usage of two data augmentation techniques with the aim to
establish if they constitute a valuable addition to the target data
types. These methods have been successfully used in mono-
phonic applications, therefore we straightforwardly extend
them to multichannel data. In this study, two augmentation
techniques are exploited:

• Background noise (BkgN): random chunks of back-
ground noise from the DESED dataset are used in random
places of the audio files [24] with a level of -5dB, -10dB
or -15dB relative to the power of the original signal.

• SpecAugment: first proposed for automatic speech
recognition [25], this method exploits the masking with
zero values in the time and frequency domain. In this
paper, we mask 15% of the feature input matrix.

IV. EXPERIMENTAL EVALUATION

A. Performed Experiments

During the experiments, models are trained for all five
training sets listed in Sec. IIIA, i.e. Noise-Train, Speech-
Train, Events-Train, SN-Train and SNE-Train. Each model is
trained three times depending on the utilized augmentation
method, i.e. with background noise (BkgN) augmentation,
SpecAugment or without any augmentation. In the testing step,
each of the trained models is tested on all three homogeneous
datasets to evaluate the performance on each of the discussed
target sound sources. Apart from Event-Test and Speech-Test

datasets, the testing set from Noise-Train is used to evaluate
the models’ performance on noise signals. Finally, we compare
the results obtained by all trained models on three test sets
to investigate their generalization and performance for the
specific data type. The procedure is repeated 5 times to obtain
a mean result for all trials. Experiments are performed using
the Keras library [26].

B. Evaluation Measures

In order to evaluate models’ performance, the DOA error
metric is used [27]. For a sequence of N frames, the measure
is defined as

EDOA =
1∑N−1

n=0 D
n
E

N−1∑
n=0

H(DOAn
R,DOAn

E), (4)

where Dn
E denotes the number of estimated DOAs in the n-

th frame with n = 0, 1, . . . , N − 1 and H(·) denotes the
Hungarian algorithm for matching the reference and estimated
direction vectors. The matching criterion is defined as a
Cartesian distance between the respective DOAs, similarly to
[28] which has shown to be a suitable regression target [29].
It is computed according to

σ =
360°
π

sin−1(

√
(xE − xR)2 + (yE − yR)2 + (zE − zR)2

2
), (5)

where x, y, z denote the coordinates of the DOA vector, and
subscripts E and R stand for the estimated and reference DOA
values. The final results are averaged over all folds [30].

V. RESULTS AND DISCUSSION

A. Comparison of Different Data Types

Table III presents the DOA error results obtained using 5
models trained using different training datasets for each of the
three test sets.

When testing on noise signals, all models show comparable
performance. The lowest DOA error equal to 8.92° is achieved
when training the model on the white Gaussian noise, however
the models trained on mixtures containing also speech and/or
events achieve just sightly worse performance. The largest
DOA errors are observed for the Speech-Train and Event-Train
datasets, which can be intuitively explained by the absence of
noise in the training data.

The differences between the models become much more
apparent when testing on audio that contains speech or events.
DNNs trained using noise only show definitely the worst per-
formance amongst all compared input data types, with 15.69°
and 15.82° DOA errors for speech and events, respectively. For
the Speech-Test dataset, we can observe a similar performance
of models trained on speech or events only, whereas for Event-
Test dataset we can notice a moderately better DOA error for
networks trained with sound events. Compared with models
trained with noise, the overall improvement exceeds 3.5° in
all cases, with the most clearly visible gain reaching over 5°
for the Event-Train model. Interestingly, the DOA error can be
even further decreased by utilizing mixtures of different signal
types. While there is already an improvement for SN-Train,
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TABLE III
THE DOA ERROR RESULTS OBTAINED FOR DIFFERENT TYPES OF

TRAINING DATA WITHOUT AUGMENTATION.

Training data DOA error [°]
Tested on noise Speech-Test Events-Test

Noise-Train 8.92 ± 0.07 15.69 ± 0.21 15.82 ± 0.22
Speech-Train 9.53 ± 0.08 11.52 ± 0.12 11.97 ± 0.12
Events-Train 9.38 ± 0.09 11.34 ± 0.11 10.90 ± 0.10

SN-Train 9.17 ± 0.08 10.99 ± 0.10 10.70 ± 0.11
SNE-Train 8.97 ± 0.09 10.01 ± 0.10 10.57 ± 0.10

Fig. 1. Localization performance obtained using different data augmentation
methods. Tested on Event-Test, averaged over 5 trials.

we observe the best performance for SNE-Train with 10.01°
and 10.57° when tested on speech and events, respectively.

These results show that even for source-independent lo-
calizers, a much better DOA estimation can be achieved by
including a variety of different sound source types in the
training process. Comparing the results obtained for models
trained only on homogeneous data, it can be observed that
DNNs trained on both speech and events tend to generalize
better then models trained with noise. Still, the performance
can be further increased by utilizing all available signal types.

B. Data augmentation

We repeat the experiments for the training data augmented
using the SpecAugment and BkgN methods. The emerging
conclusions are coherent for all testing sets, hence we show
only the results for the Event-Test dataset in Fig. 1.

Augmentation that relies on adding background noise to the
data results in a slight improvement for models trained on the
mixture sets. For Event-Train and Speech-Train we observe
no significant change of the networks’ performance, whereas
Noise-Train shows a moderate increase in DOA error. Better
results are observed when using the SpecAugment technique.
The lowest overall error equal to 9.52° is shown for SNE-
Train. A similar improvement can be seen for SN-Train and
Event-Train, whilst for Speech-Train and Noise-Train again
the technique does not lead to better results.

Overall, using augmentation techniques for all investigated
training sets, does not remarkably change the differences ob-
served between the data types. Best results are obtained using
both mixture datasets, significantly outperforming the Noise-

Train set. Performance can be further increased especially by
using the SpecAugment technique. In this study we focused
on simple augmentation strategies independent of the spatial
format and spatial properties of the multichannel signals.
Recently some dedicated spatial augmentation techniques have
appeared for joint localisation and detection [31–33]. Such
techniques are expected to bring larger benefits to localization
than the ones tested here, and their comparison remains a topic
for future research. Nevertheless, we expect the benefits from
using a diverse dataset to remain valid.

VI. CONCLUSIONS

In this paper, we investigate the robustness of sound source
localization depending on the diversity of the training data.
Seven different datasets are created, each consisting of homo-
and heterogeneous mixtures of noise, speech and sound events.
With the aim of localizing overlapping sound events, we per-
form a comparative study analyzing the models’ performance
depending on the type of training data. Furthermore, we utilize
two augmentation methods to use them as a point of reference
for our results. All experiments are performed for a scenario
of two simultaneously active sources.

We show that models trained with speech or events show
a significant improvement over DNNs fed with noise signals
only when tested on their target sound sources. Using mixtures
of different types of sounds leads to even larger improve-
ments and very good generalization between the different
testing sets. Interestingly, models trained with speech and
sound events showed better generalization to noise signals
than vice versa. Compared with noise signals, the gain from
using other types of sound sources ranges from 3° to 5°
of the DOA error, showing that the common technique of
training source localizers with noise might be not optimal.
Differences between the datasets remain for scenarios utilizing
augmentation methods as well. We note that the conclusions
should be further investigated by performing experiments and
tests on real life data, which is a challenging task due to the
shortfall of data containing sound events. Our study shows
however that including sound events during the training of
SSL models can significantly improve their final performance.
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