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Abstract—In this paper, we introduce an optimal quadratic
Wiener beamformer for magnitude estimation of a desired signal.
For simplicity, we focus on a two-microphone array and develop
an iterative algorithm for magnitude estimation based on a
quadratic multichannel noise reduction approach. We analyze
two test cases, with uncorrelated and correlated noises. In each,
we derive the appropriate versions of the Wiener beamformer,
as well as their corresponding unbiased magnitude estimators.
We compare the root-mean-squared errors (RMSEs) for the
linear and quadratic Wiener beamformers and show that for
low input signal-to-noise ratios (SNRs), the RMSE obtained with
the proposed approach is either lower than or equal to the RMSE
obtained with the linear Wiener beamformer, depending on the
type of noise and its distribution.

I. INTRODUCTION

Magnitude estimation of a desired signal of interest is a
common task in a wide area of fields, including communica-
tions, target detection, and speech enhancement. The desired
signal is typically only observable through noisy samples, that
is, it is corrupted by noise, which may critically damage the
performance of the application at hand. Consequently, a large
number of studies have addressed this issue by exploiting data
either from a single microphone or a sensor array.

Most commonly with communications and speech signals,
processing is done in the frequency domain. That is, a frame
of consecutive time-domain samples is transformed into the
frequency domain by applying the fast Fourier transform
(FFT), yielding a set of analysis coefficients, which can be
processed more efficiently than the time-domain samples. This
is particularly significant with multichannel methods, in which
time-domain noisy observations are sampled simultaneously
in multiple sensors. These methods typically seek for a linear
optimal solution with respect to some criterion, looking to
estimate both the desired signal phase and magnitude [1]–[4].
On the contrary, single-channel approaches may either attempt
to estimate the complex desired signal [5]–[8] or may directly
attempt to estimate its magnitude [9]–[17], which is known to
be more prominent than its phase for some applications.

Recently, a quadratic noise reduction approach was sug-
gested [17], [18]. The idea behind the quadratic approach is
to estimate the spectral power of the desired signal by applying
a complex-valued beamformer, which takes into consideration
data from higher-order moments. The quadratic beamformer is
applied to a modified version of the noisy observations vector
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and may be seen as a generalization of the traditional linear
beamformer.

In this paper, we introduce a quadratic beamformer for
a desired signal magnitude estimation, which is optimal in
terms of the RMSE. For simplicity, we focus on a two-
microphone array and develop an iterative algorithm for
magnitude estimation based on the quadratic multichannel
noise reduction approach. We analyze two test cases, with
uncorrelated and correlated noises. In each case, we derive the
appropriate version of the Wiener beamformer, as well as the
corresponding unbiased magnitude estimator. We compare the
RMSEs with the linear and quadratic Wiener beamformers and
show that for low input SNRs, the RMSE obtained with the
proposed approach is either lower than or equal to the RMSE
obtained with the linear Wiener beamformer, depending on the
type of noise and its distribution.

The rest of the paper is organized as follows. In Section II,
we present the signal model. In Section III, we introduce the
quadratic beamforming approach. In Section IV, we analyze
two test cases, with both uncorrelated and correlated noises.
We derive the quadratic optimal beamformers in terms of
minimum RMSE and use them to derive unbiased magnitude
estimators. Then, in Section V, we demonstrate the advantage
of the quadratic approach over the linear one through simula-
tions. Finally, we summarize this work in Section VI.

II. SIGNAL MODEL

Consider an array consisting of M omnidirectional micro-
phones. The received signals at the frequency index f are
expressed as [3], [19]

Ym(f) = Xm(f) + Vm(f), m = 1, 2, . . . ,M, (1)

where Ym(f) is the mth microphone signal, Xm(f) is the
zero-mean desired speech signal, and Vm(f) is the zero-mean
additive noise. It is assumed that the desired signal and noise
are uncorrelated.

Considering the first microphone as the reference, we may
express (1) in a vector notation:

y(f) = dθd(f)X1(f) + v(f), (2)

where

y(f) = [Y1(f) Y2(f) · · · YM (f)]
T
,
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v(f) is defined in a similar manner to y(f), the superscript
T is the transpose operator, and

dθd (f) =
[
1 e−2πfδ cos θd/c · · · e−2πfδ(M−1) cos θd/c

]T
(3)

is the frequency-domain steering vector, considering the
farfield planar wave model [1], [2]. In addition, θd is the
desired speech signal incident angle, δ is the inter-element
spacing, c = 340 m/s is the speed of sound, and  =

√
−1 is

the imaginary unit.
Since y(f) is the sum of two uncorrelated components, its

correlation matrix is

Φy(f) = E
[
y(f)yH(f)

]
(4)

= φX1
(f)dθd(f)dHθd(f) + Φv(f),

where E[·] denotes mathematical expectation, the super-
script H is the conjugate-transpose operator, φX1

(f) =

E
[
|X1(f)|2

]
is the variance of X1(f), and Φv(f) =

E
[
v(f)vH(f)

]
is the 2nd-order correlation matrix of v(f)

whose top-left element is φV1
(f) = E

[
|V1(f)|2

]
.

III. QUADRATIC BEAMFORMING

Conventionally, with an array of M sensors, beamforming
is performed by applying a complex-valued linear filter, h(f)
of length M , to the observation signal vector, y(f), i.e., [3],
[19]

X̂(f) = hH(f)y(f) (5)

= X1(f)hH(f)dθd(f) + hH(f)v(f),

where the filter output, X̂(f), is an estimate of X1(f). We
note that X̂(f) is complex, that is, it carries information on
both the magnitude and phase of the desired signal.

Recently, a quadratic noise reduction approach was sug-
gested in [18]. According to this technique, we can estimate
the spectral power of X̂(f) defined in (5) for a given complex-
valued beamformer h̃(f) of length M2 by∣∣∣X̂(f)

∣∣∣2 = h̃H(f)ỹ(f), (6)

where ỹ(f) = y∗(f) ⊗ y(f), with the superscript ∗ being
the complex-conjugate operator and ⊗ the Kronecker product.
Additionally, it was shown that

φX̂(f) = E
[∣∣∣h̃H(f)ỹ(f)

∣∣∣] (7)

≈
∣∣∣φX1(f)h̃H(f)d̃θd(f) + h̃H(f)vec [Φv(f)]

∣∣∣ ,
where d̃θd(f) = d∗θd(f) ⊗ dθd(f) is the quadratic steering
vector and vec[·] is the vectorization operator.

IV. ANALYSIS OF TWO TEST CASES

As of this point, for the sake of simplicity, let us assume
that M = 2 and θd = 90o (it should be noted, though, that
this approach is indeed general and not limited to certain array
sizes or incident angles). Hence, (2) reduces to

y =

[
X
X

]
+

[
V1
V2

]
(8)

=

[
aeφa

aeφa

]
+

[
V1
V2

]
,

where a and φa are the magnitude and phase of the desired
signal, respectively, and the explicit dependence on frequency
is dropped to lighten the notation. In this model, we assume
the desired signal is a deterministic and unknown variable.
With a known to be more prominent than φa for speech
enhancement purposes [10], we further assume that φa = 0.
Consequently, our objective is to derive optimal estimators for
the real and positive variable a in two key cases: uncorrelated
and correlated noises.

A. Uncorrelated Noise

Let us assume that V1 and V2 are independent, real, zero-
mean, identically-distributed random variables whose vari-
ances is σ2. Adopting the RMSE as the performance criterion,
the optimal linear beamformer is given by the linear Wiener
beamformer [20], [21]:

hW = φXΦ−1y dθd (9)

= a2Φ−1y 12

.
= [HW(1) HW(2)]

T
,

where 12 is an “all-ones” vector of length 2, and we assume
that the correlation matrix Φy is either given or can be
estimated from the noisy observations. Then, considering (8),
an unbiased estimator for a is given by

â [hW] =

√√√√max

{
|hTWy|2 − σ2‖hW‖2

|hTW12|2
, 0

}
, (10)

where ‖ · ‖ is the Euclidean norm.
We follow a similar protocol with h̃ where (6) is employed.

That is, we are interested in solving the following optimization
criterion:

min
h̃
E
∣∣∣h̃T ỹ − a2

∣∣∣2 , (11)

whose solution is given by

h̃W = a2Φ−1ỹ E (ỹ) (12)

= a2Φ−1ỹ


a2 + σ2

a2

a2

a2 + σ2


.
=
[
H̃W(1) H̃W(2) H̃W(3) H̃W(4)

]T
,
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where the 4th-order correlation matrix Φỹ = E
[
ỹỹH

]
is

assumed to be known or can be estimated from the noisy
observations. We refer to h̃W as the quadratic Wiener filter.
Therefore, in a similar manner to (10), we obtain an unbiased
estimator for a based on h̃W:

â
[
h̃W

]
=

√√√√√max

{
h̃TWỹ − σ2

[
H̃W(1) + H̃W(4)

]
h̃TW14

, 0

}
,

(13)

where 14 is an “all-ones” vector of length 4.
While their structures exhibit some level of similarity, some

key differences between hW and h̃W should be addressed.
For example, hW is, in general, designed to estimate a
complex-valued variable, whereas h̃W is designed to estimate
a real and positive variable. In addition, hW only requires
the second order-statistics of the noisy observations, but h̃W

takes advantage of their 4th-order statistics. As a result, the
RMSE with â

[
h̃W

]
is expected to be potentially lower than

with â [hW]. Note that the inversion of Φỹ requires more
multiplication operations than Φy, but when M is small, the
additional complexity is insignificant.

We end this part by pointing out that both versions of the
Wiener beamformers require the estimate of a to be known
in advance. Since this is the value we wish to estimate, we
will employ an iterative procedure in which every iteration
consists of two steps: (a) deriving the appropriate beamformer
for a given value of a and (b) using that beamformer and its
corresponding estimator to generate a new estimate for a. It
can be verified that due to the convex nature of the problem,
the convergence of the beamformers, and thereby the estimate
of a, is guaranteed. Summary of the magnitude estimation al-
gorithm with the quadratic Wiener beamformer, given multiple
noisy observations, is elaborated in Algorithm 1. We note that
the estimation process with the linear Wiener beamformer is
similar, but requires the following modifications: (a) equations
(12) and (13) are replaced by (9) and (10), respectively, (b)
lines 5 and 6 are omitted as Φy is computed directly from
{yn}Nn=1 in line 7, and (c) the expression hW ← [1 0]

T

replaces line 9.

B. Correlated Noise

The correlated noise case corresponds, for example, to
directional interferences. That is, the same noise signal is
received in both microphones but with a frequency-dependent
phase difference. Hence, with two uncorrelated real directional
interferences V1 and V2, (8) reduces to

y =

[
a
a

]
+

[
V1

V1e
−2πfδ cos θi,1/c

]
+

[
V2

V2e
−2πfδ cos θi,2/c

]
, (14)

where θi,1 and θi,2 are the respective incident angles of V1
and V2. We assume V1, V2 ∼ N

(
0, σ2/2

)
, and note that the

Algorithm 1 Magnitude Estimation with the Quadratic Wiener
Beamformer

1: Input: {yn}Nn=1, . set of N noisy vectors
2: N0, . number of samples to estimate Φỹ

3: I0, . number of iterations
4: a0 . initial guess for a
5: for n=1:N do
6: ỹn ← y∗n ⊗ yn . modify the observations
7: Φỹ ← 1

N0
ΣN0
n=1ỹnỹHn

8: â← a0 . initialize â
9: h̃W ← [1 0 0 0]

T
. initialize h̃W

10: for i=1:I0 do
11: obtain h̃W using (12) . update h̃W

12: for n=1:N do
13: obtain ân using (13)
14: â← 1

#[ân>0]Σ[ân>0]ân . update â

15: Output: â . desired signal magnitude estimate

aforementioned phase differences turn the problem from real
to complex.

We turn our attention to the well-known beampattern, which
exhibits the ULA response to a plane wave impinging from
the direction θ. With a linear beamformer h of length M , the
beampattern is defined by

Bθ [h] = hHdθ, (15)

where the steering vector dθ is defined as in (3). It is
well known that a linear beamformer of length M = 2 is
only capable of placing a single zero in its beampattern (in
addition to the distortionless constraint) [3]. Therefore, we
cannot completely eliminate the two directional interferences
simultaneously. Instead, we will use the linear Wiener beam-
former, hW, from the previous part and derive a corresponding
magnitude estimator.

Recalling (7), we may define an analogous power beampat-
tern with a quadratic beamformer h̃ of length M2 = 4 by

B̃θ
[
h̃
]

= h̃H d̃θ (16)

=

 H̃(3)

H̃(1) + H̃(4)

H̃(2)


H  e2πfδ cos θ/c

1
e−2πfδ cos θ/c


= g̃H

 1
e−2πfδ cos θ/c

e−4πfδ cos θ/c

 ,
where

h̃ =
[
H̃(1) H̃(2) H̃(3) H̃(4)

]T
, (17)

g̃ = e−2πfδ cos θ/c
[
H̃(3) H̃(1) + H̃(4) H̃(2)

]T
. (18)

We observe that the power beampattern of a beamformer
h̃ of length 2 is mathematically equal to a linear beampattern
of an alternative beamformer g̃ of length 3 whose elements
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are formed by linear combinations of the elements of h̃. We
deduce that h̃ is capable of placing two distinct nulls in its
power beampattern.

Next, we will adapt the two versions of the Wiener beam-
former and derive appropriate estimators. As hW depends
merely on Φy, whereas h̃W depends on both Φỹ and E (ỹ),
the linear beamformer remains the same as in (9), but the
quadratic beamformer changes to

h̃W = a2Φ−1ỹ E (ỹ) (19)

= a4Φ−1ỹ 14 + σ2 βζ ,

where

βζ =
[

1 ζ/2 ζ∗/2 1
]T
, (20)

ζ = e−2πfδ cos θi,1/c + e−2πfδ cos θi,2/c. (21)

In addition, the magnitude estimators are adapted accord-
ingly. We immediately have

â [hW] =√√√√max

{
|hH

Wy|2−σ2[<{H∗
W(1)HW(2)ζ∗}−‖hW‖2]
|hH

W12|2
, 0

}
(22)

and

â
[
h̃W

]
=

√√√√max

{
h̃HW [ỹ − σ2βζ ]

h̃HW14

, 0

}
, (23)

which can be both verified to be real and non-negative. We
note that Algorithm 1 applies for the correlated noise case
as well by appropriately modifying the expressions for the
Wiener beamformers and the estimates of a.

V. SIMULATIONS

Let us begin with the uncorrelated noise case. We set a = 1,
φa = 0, and generate N = 10, 000 independent realizations of
V1 and V2 drawn from two distinct probability distributions:
normal, that is, V1, V2 ∼ N

(
0, σ2

)
, and exponential, that is,

V1, V2 ∼ exp (1/σ). We note that the mean value is subtracted
from each noise sample of the exponential distribution to form
zero-mean samples. We use N0 = 500 realizations to generate
estimates of Φy and Φỹ, respectively. Next, we perform the
following iterative procedure for each of the beamformers
which consists of I0 = 5 iterations (although the simulations
clearly indicated that I0 = 3 iterations are enough). First, the
beamformer is derived with the latest estimate of a fixed. Then,
it is used to generate 10, 000 new estimates for a, out of which
the positive estimates are averaged to acquire a single valid
estimate. We note that both filters are initialized as identity
filters and that the initial magnitude is a0 = 5.

We repeat this experiment for varying values of the broad-
band input SNR from −20 dB to 20 dB, where it is defined
by

iSNR =

∫
f
φX(f)df∫

f
φV1

(f)df
(24)

=
a2

σ2

Fig. 1: Magnitude RMSE with the linear and quadratic
Wiener beamformers, hW and h̃W, with two types of uncorre-
lated additive noise: normally- and (zero-mean) exponentially-
distributed.

and employ the aforementioned RMSE defined by

RMSE [hW] =

√
E
∣∣a− â [hW]

∣∣2, (25)

RMSE
[
h̃W

]
=

√
E
∣∣∣a− â [h̃W

] ∣∣∣2, (26)

as the performance measure. The RMSE values as a function
for the input SNR are shown in Fig. 1. We observe that for
high input SNRs, the RMSE converges to zero, with both
estimators and noise distributions. For low input SNRs and
normally-distributed noise, both estimators perform the same.
This results from the fact that with normally-distributed noise
the latent information in higher-order moments is limited.
For example, the 3rd-order moment is strictly zero. On the
contrary, with the exponentially-distributed noise, the RMSE
with the quadratic Wiener beamformer is lower than with the
linear Wiener beamformer, with the performance gap reducing
as the input SNR increases.

We now turn to the correlated noise case. We maintain
the same simulation settings of the uncorrelated noise case
and generate samples according to the model in (14). We
set f = 4 kHz, δ = 5 mm, θi,1 = 0o, and θi,2 = 180o.
We examine the RMSEs with the two Wiener beamformers
and their respective beampatterns (power beampattern with
h̃W). The results are depicted in Figs 2 and 3, respectively.
We observe that the RMSE with h̃W is significantly lower
than with hW, with the former achieving a practically zero
RMSE for input SNRs higher than 0 dB. As before, for
high input SNRs, the RMSE converges to zero with both
beamformers. Addressing the beampatterns, we note that while
hW exhibits a constant “all-pass” pattern, h̃W exhibits an over-
40 dB attenuation in both θi,1 and θi,2, whereas θd remains
distortionless. Clearly, such a performance cannot be obtained
using a linear beamformer of length M = 2.
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Fig. 2: Magnitude RMSE with the linear and quadratic Wiener
beamformers, hW and h̃W, with two normally-distributed
directional interferences.

(a) (b)

Fig. 3: Beampattern of the linear Wiener beamformer hW

and a power beampattern of the quadratic Wiener beamformer
h̃W, with two normally-distributed directional interferences at
θi,1 = 0o and θi,2 = 180o. (a) hW and (b) h̃W.

VI. CONCLUSIONS

We have introduced an optimal quadratic Wiener beam-
former for a desired signal magnitude estimation which utilizes
information from higher-order moments. To simplify the for-
mulation, we assumed a two-microphone array, but the gener-
alization to any array is straightforward. We developed an iter-
ative algorithm for magnitude estimation based on a quadratic
multichannel noise reduction approach, and addressed two
types of additive noise: uncorrelated and correlated. For each
noise type, we derived a quadratic version of the Wiener
beamformer and a respective unbiased magnitude estimator,
and compared their performances to the linear versions of the
Wiener beamformer. With uncorrelated noise, we have shown
that the quadratic magnitude estimator yields a lower RMSE
with respect to the linear estimator in low input SNRs, in case
the noise is exponentially distributed. When the noise is drawn
from a normal distribution, both estimators perform equally.
With correlated noise, we have shown that the quadratic
beamformer eliminates two spatial directions, as opposed to

a single direction with any linear beamformer. For low input
SNRs, this resulted in a significantly lower RMSE using the
quadratic beamformer.
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