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Abstract—Adaptive beamforming, and the minimum variance
distortionless response (MVDR) beamformer in particular, is
widely used in speech enhancement applications. We consider
the enhancement of a single desired speaker in a vehicle (e.g.
the driver), in road noise environment. For our problem of a
fixed look direction and continuous noise tracking, the gener-
alized sidelobe canceler (GSC) decomposition was shown to be
computationally efficient for the implementation of the MVDR
criterion. To address robustness issues that arise due to array
imperfection, the projected least mean squares (LMS) algorithm,
commonly adopted for the adaptive noise canceler (ANC) block
realization, was shown to be effective. Here, due to the high
dynamics of vehicle road and cabin noises, we propose utilizing a
recursive least squares (RLS) flavor algorithm for the realization
of the ANC block. To address the robustness issue, we introduce
the Modified RLS algorithm. The Modified RLS converges to
the required amount of diagonal loading which is associated
with the array immunity to imperfection. The proposed diagonal
loading algorithm can be easily employed in any diagonal loading
problems utilizing RLS based adaptive filtering (AF). We present
its operation considering audio signals recorded in a vehicle,
demonstrating the way artifacts are mitigated when applied.

Index Terms—beamforming, diagonal loading, acoustics, ro-
bustness

I. INTRODUCTION

The minimum variance distortionless response (MVDR)
beamformer is a commonly used technique for speech en-
hancement in audio communication and speech recognition
applications. It is targeted at noise reduction and interference
cancellation, while constrained to maintain the desired speech
signal undistorted. Due to variations in the microphone man-
ufacturing process [1], numerical errors resulting from finite
precision [2] or design implications [3], robustness concerns
arises and are often addressed as an additional constraint on
the norm of the beamformer.

In time-varying noise environments, the generalized side-
lobe canceler (GSC) structure is commonly utilized for the
realization of the MVDR beamformer for real-time imple-
mentation to enable efficient noise adaptation [4]. A common
method for the realization of noise canceling adaptation filter is
the least mean squares (LMS) algorithm [5]. It has a complex-
ity of O(M), for M being the number of microphones, and
with a simple scalar normalization can achieve the required
amount of robustness, that is, the desired maximal beamformer
norm. This normalization can be shown to be equivalent to the

commonly used diagonal loading technique [6]. In high noise
dynamics, and especially for directional interferences, the
LMS method may achieve low performance due to its limited
convergence rate and tracking capabilities. To overcome this, a
recursive least squares (RLS) flavor tracking algorithm can be
utilized instead [7]. Though its implementation complexity is
ofO(M2), it assures fast convergence rate with no dependence
of noise directionality [5].

Introducing robustness constraints when the RLS is utilized
is not as straightforward as it is for the LMS algorithm. The
simple normalization does not apply in the RLS case and
the alternative of an iterative solution may not be applicable
in many real-time applications. Here, we propose a Mod-
ified RLS procedure which converges to the optimal level
of diagonal loading λ. In the proposed algorithm, the value
of λ is recursively estimated. In each new frame, the noise
spatial correlation matrix is updated with some underlying
level of loading which recursively converges to λ, resulting in
the required norm constraint. A key feature of our proposed
algorithm is that the exact diagonal loading is neither known
nor required, and its level is achieved implicitly, relying on the
required beamformer norm. In previous study [8], the level of
diagonal loading in each time frame is restricted to a small
value. This restriction can delay the loading value convergence
to the required value. In the proposed algorithm any diagonal
loading value can be applied, making it suitable for all possible
scenarios. The proposed diagonal loading algorithm use is not
restricted only to the discussed use case, and can be easily
employed in any diagonal loading problems utilizing RLS-
based adaptive filtering (AF). We describe the algorithm in
details and show that only slight modification to the traditional
RLS algorithm is required.

II. PROBLEM FORMULATION

Consider a desired speech signal, contaminated by additive
noise comprising of any combination of coherent, diffuse and
spatially white noise signals, impinging on an array consisting
of M microphones. The microphone signals are sampled at a
sampling rate of fs and transformed into the short time Fourier
transform (STFT) using a window of length K with overlap
η between frames. The transformed microphone signals are
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stacked into an M dimensional vector per time-frequency bin

x(`, k) = h(k)s(`, k) + v(`, k),

where ` and k are time-frame and frequency bin indices,
respectively, s(`, k) is the desired signal, v(`, k) is the noise
component vector and h(k) is a vector of acoustic transfer
functions (ATFs) and is assumed to be time-independent (static
source).

Assuming that the speech and noise signals are statistically
independent, the spatial covariance matrix of the received
signals is

Φx(`, k) = σ2
s(`, k)h(k)hH(k) + Φv(`, k), (1)

where σ2
s(`, k) is the power spectral density (PSD) of the

desired signal, Φv(`, k) is the spatial covariance matrix of
the noise component and (·)H denotes the conjugate-transpose
operator.

Given an a priori knowledge of h(k)1, the problem at hand
is to design a beamformer w(`, k) which is robust to array
imperfection, such that the output signal

y(`, k) = wH(`, k)x(`, k) (2)

is enhanced, according to the MVDR criterion, defined in
the following section. For brevity, the frequency bin index is
omitted hereafter.

III. BACKGROUND

The MVDR beamformer is defined in the STFT domain as
the solution to the following optimization problem:

w(`) = argminwwHΦv(`)w s.t. wHh = 1. (3)

Its closed-form solution is given by:

w(`) =
Φ−1

v (`)h

hHΦ−1
v (`)h

. (4)

To increase the robustness of the beamformer to array
imperfection, additional constraint on the norm of the beam-
former is introduced to the optimization criterion in (3) [6]:
w(`) = argminwwHΦv(`)w s.t. wHh = 1 and ‖w‖2 ≤ δ2,

(5)

where δ2 is a design requirement which limits the maximal
sensitivity to uncorrelated errors and ‖ · ‖ is the l2 norm.

The obtained closed-form solution of (5) is given by

w(`) =
(Φv(`) + λ`I)

−1
h

hH (Φv(`) + λ`I)
−1

h
, (6)

where λ` is the Lagrange multiplier related to δ2 for time
index ` and I is an M ×M identity matrix.

The GSC structure splits the constrained optimization in (5)
into two tasks, namely maintaining the desired signal undis-
torted and reducing noise [11]. The beamformer is accordingly
split into

w(`) = q−Bf̂(`), (7)

where q is the M × 1 fixed beamformer (FBF), B is the
M×(M−1) blocking matrix (BM) and f̂(`) is the (M−1)×1
adaptive noise canceler (ANC).

1The estimation of h(k) or alternatively its RTF representation, is widely
researched [9], [10] and is not addressed in the remainder of the paper.

The FBF is responsible for satisfying the distortionless
response constraint. Matrix B is designed to block the desired
signal, i.e. BHh = 0. Therefore, theoretically, the (M−1) di-
mensional signal at its output contains only noise components,
and is hence denoted the noise reference signal. The ANC is
designed to minimize the variance of the noise component
at the output y(`), by estimating and subtracting the noise
component at the output of the FBF using the noise reference
signals. It is defined as the solution to the unconstrained
minimum mean square error (MMSE) problem:

f̂(`) = argminf̂ (q−Bf̂)H(Φv(`) + λ`I)(q−Bf̂). (8)

The well-known closed-form solution of (8) is the Wiener filter

f̂(`) = (BH(Φv(`) + λ`I)B)−1BH(Φv(`) + λ`I)q. (9)

By further assuming orthogonal GSC decomposition, such that
BHq = 0, and unitary matrix B, (9) becomes:

f̂(`) = (BHΦv(`)B + λ`I)−1BHΦv(`)q

= (Φu(`) + λ`I)−1φud(`), (10)

where we denoted the noise reference signal by u , BHv ,
d , vHq and φud is the cross correlation vector between u
and d.

Subject to the same assumptions, a projected LMS type
algorithm proposes a recursive solution to (10) and can be
adopted for reducing the computational complexity when the
noise field is time-varying and the optimal ANC filter is
continuously changing. It address the equivalent optimization
problem of f̂ , as the constrained optimization problem of the
form [2]:

f̂(`) = argminf̂ (q−Bf̂)HΦv(`)(q−Bf̂) s.t. ‖f̂‖2 ≤ δ̂2,
(11)

where we defined δ̂2 , δ2−‖q‖2. The norm constraint defines
a multidimensional sphere that is centered at the origin, and
therefore its projection can be implemented by a simple scalar
normalization [6].

IV. PROPOSED SOLUTION

Let us first recall the traditional RLS procedure that pro-
poses a computationally efficient solution to:

f̃(`) = Φ−1
u (`)φud(`). (12)

The RLS procedure avoids a direct matrix inversion and
utilizes the Woodbury matrix lemma assuming rank-1 update
of Φu(`− 1), that is

Φu(`) = µΦu(`− 1) + (1− µ)u(`)uH(`), (13)

for obtaining Φ−1
u (`) with some forgetting factor µ. It can be

implemented with complexity of O(M2) by considering the
values of Φ−1

u (`− 1) and u(`).
By further assuming rank-1 update of φud(` − 1) with µ,

a time update equation for f̃(`) is obtained. The algorithm is
described in [5].

The problem we are addressing here is a modification
of (12) as presented in (10). Instead of efficiently inverting
(µΦu(` − 1) + (1 − µ)u(`)uH(`)) to obtain f̃(`), we are
required to invert a matrix of the form
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(µΦu(` − 1) + (1 − µ)u(`)uH(`) + λ`I) to obtain f̂(`),
which does not comply with the rank-1 assumption.

The proposed Modified RLS algorithm is described in the
next sections. We will show that with a slight modification of
the traditional RLS procedure, we can recursively add some
amount of diagonal loading on each time-frame, until the
desired amount of loading is reached. This loading control
is incorporated into the traditional RLS procedure.

A. Modified Matrix Inversion

Define:

Φ̂u(`) , Φu(`) + λ`I. (14)

In a previous study [8], a Taylor series approximation was used
to solve for Φ̂−1

u (`). This approach imposes a strict constraint
of λ` � 1 for the Taylor approximation to hold valid. This
restriction can delay the loading value convergence to the
required level. Furthermore, the loaded value was realized in
the solution for f̂(`) without changing the properties of Φ̂u(`)
which does not ensure its stability in case it is ill conditioned.

As will be presented next, in our proposed solution, any
required value for diagonal loading can be applied. Further-
more, it is primarily applied on Φ̂u(`), ensuring the stability
of Φ̂−1

u (`).
Assuming rank-1 update for obtaining Φu(`), (14) becomes:

Φ̂u(`) = µΦu(`− 1) + (1− µ)u(`)uH(`) + λ`I

= µ(Φu(`− 1) + λ`−1I) + (1− µ)u(`)uH(`) + ∆λ`I

= µΦ̂u(`− 1) + (1− µ)u(`)uH(`) + ∆λ`I

= R(`) + ∆λ`I (15)

where

∆λ` , λ` − µλ`−1 (16)

and

R(`) , µΦ̂u(`− 1) + (1− µ)u(`)uH(`). (17)

Equation (15) proposes that the additional required loading
in time-frame `, that is ∆λ`, can be applied to the traditional
RLS output R(`), rather than the addition of the total required
loading λ` to Φu(`) as suggested in (14).

Initially, we wish to modify the traditional RLS procedure
to efficiently obtain

Φ̂−1
u (`) = (R(`) + ∆λ`I)

−1
. (18)

For that, we propose the following relation:

Φ̂−1
u (`) = (R(`) + ∆λ`I)−1

=

(
R(`) + ∆λ`

M∑
i=1

eie
T
i

)−1

, (19)

where ei is the standard basis vector with ith coordinate equals
1 and (·)T denotes the transpose operator.

Defining the partially diagonal loaded matrix Rp, p ≤M :

Rp(`) , R(`) + ∆λ`

p∑
i=1

eie
T
i , (20)

it can be expressed as:

Rp(`) = R(`) + ∆λ`

p−1∑
i=1

eie
T
i + ∆λ`epe

T
p

= Rp−1(`) + ∆λ`epe
T
p . (21)

Equation (21) states that Rp can be viewed as a rank one
update of the Rp−1 matrix, thus its inverse can be calculated
efficiently using the Woodbury inversion lemma:

R−1
p (`) =

(
Rp−1(`) + ∆λ`epe

T
p

)−1

= R−1
p−1(`)−

R−1
p−1(`)epe

T
p R−1

p−1(`)

∆λ−1
` + eTp R−1

p−1(`)ep

= R−1
p−1(`)−

rp−1(p)rHp−1(p)

∆λ−1
` + rp−1(p, p)

, (22)

where rp−1(i, j) is the element of R−1
p−1(`) in the (i, j)

position, and rp−1(i) is the ith column of R−1
p−1(`). Equation

(22) defines a recursion step which solves (19) in M iterations
to obtain Φ̂−1

u (`).
Finally, the filter f̂(`) is obtained. For that, we define the

indeterminate filter f(`) as:

f(`) = R−1(`)φud(`). (23)

By considering Eq. (12), it can be noted that it is the result
of utilizing the traditional RLS steps.

This relation can be used with (15) to solve for the final
weights value

f̂(`) = Φ̂−1
u (`)φud(`)

= Φ̂−1
u (`) (R(`) + ∆λ`I−∆λ`I) f(`)

=
(
I−∆λ`Φ̂

−1
u (`)

)
f(`). (24)

This completes the proposed inversion algorithm.
The modified matrix inversion process is summarized in

Algorithm 1. The recursion step complexity is the same as the
standard RLS algorithm i.e. O(M2). Since M recursion steps
are required to complete the diagonal loading process, the
entire algorithm complexity is of O(M3). In order to reduce
the complexity burden of the algorithm only one recursion
step can be taken in each time frame, thereby completing the
entire recursion after M frames. This method will maintain
the proposed algorithm complexity at O(M2) while delaying
the loading effect by M frames. Furthermore, this computation
is only required when the square norm of the ANC exceeds
δ̂ and results with an Hermitian matrix, which can further
reduce the computational load. It should be noted that the
proposed diagonal loading algorithm is a general algorithm
and its use is not restricted to the GSC robustness problem.
The proposed algorithm can be used in all problems utilizing
an RLS based AF which requires diagonal loading e.g. multi
reference acoustic echo cancellation (AEC) with correlated
reference channels.

B. Obtaining ∆λ

Generally, the desired amount of loading λ is not known and
instead the requirement is given in terms of the beamformer
norm, or equivalently in terms of the norm of the ANC filter.
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In this section, we propose to derive the required ∆λ` for
recursively converging to the desired ANC norm.

We first consider an iterative procedure which at the nth

iteration introduces additional loading of ∆λn` . The stopping
criterion is such that ensures ‖f̂(`)‖2 ≤ δ̂2 (see (11)). We
parameterize the noise canceller at time ` at the nth iteration
by λn` , denoting it by f̂(λn` ) and define the objective function
g(λn` ):

g(λn` ) = ‖f̂(λn` )‖2 − δ̂2. (25)

Under the assumption of positive definite Φu, the norm of the
ANC can be rewritten as:

||f̂(λn−1
` )||2 =

∥∥∥∥∥
M−1∑
i=0

1

λn−1
` + γi

uiu
H
i φud

∥∥∥∥∥
2

=

M−1∑
i=0

(
1

λn−1
` + γi

)2

||uiuHi φud||2

=

M−1∑
i=0

(
1

λn−1
` + γi

)2

|uHi φud|2

=

M−1∑
i=0

(
1

λn−1
` + γi

)2

α2
i

(26)

where γi > 0 are the eigenvalues of Φu, ui its eigenvectors
for i = 0, . . . ,M − 1 and we defined αi , |uHi φud|.

For the iterative update we use Newton-Raphson method

λn` = λn−1
` −

g(λn−1
` )

g′(λn−1
` )

. (27)

Based on (26), the derivative g′(λn−1
` ) can be lower bounded

by:

g′(λn−1
` ) = −2

M−1∑
i=0

α2
i

1

(λn−1
` + γi)3

≥ −2
1

λn−1
`

M−1∑
i=0

α2
i

(λn−1
` + γi)2

=
−2

λn−1
`

||f̂(λn−1
` )||2. (28)

Substituting (28) in (27) proposes the following update step:

λn` = λn−1
` +

λn−1
`

2

(
1− δ̂2

||f̂(λn−1
` )||2

)
. (29)

The inequality in (28) implies that the step-size actually used is
smaller or equal to that suggested by Newton-Raphson method
(i.e smaller than −g(λn−1

` )/g′(λn−1
` )). The direction of the

step size is maintained equal to that suggested by the Newton-
Raphson method due to the assumption of a positive definite
Φu.

For the recursive implementation, we substitute the iteration
index n with the time index ` and propose the recursive form
of (29) to be:

λ` = λ`−1 +
λ`−1

2

(
1− δ̂2

||f(`)||2

)
. (30)

Substituting (30) in (16) yields:

∆λ` = λ`−1 (1− µ) +
λ`−1

2

(
1− δ̂2

‖f(`)‖2

)

= λ`−1

((
3

2
− µ

)
− δ̂2

2‖f(`)‖2

)
. (31)

The Modified RLS is summarized in Algorithm 2. Negative
values of ∆λ` suggest that sufficient amount of loading has
been achieved and no additional loading should be applied for
the `th time frame.

Algorithm 1 Modified Matrix Inversion

Input: R−1(`), ∆λ`, f(`)
Output: Φ̂−1

u (`), f̂(`)
1: R−1

0 = R−1(`)
2: for 1 ≤ p ≤ M do
3: R−1

p = R−1
p−1(`)− rp−1(p)rHp−1(p)

∆λ−1
` +rp−1(p,p)

4: end for
5: Φ̂−1

u (`) = R−1
M

6: f̂(`) =
(
I−∆λ`Φ̂

−1
u (`)

)
f(`)

7: return Φ̂−1
u (`), f̂(`)

Algorithm 2 Modified RLS

Input: f̂(`− 1), Φ̂−1
u (`− 1), λ`−1, u(`), d(`), δ̃, µ

Output: f̂(`), Φ̂−1
u (`), λ`

1: k` =
µ−1Φ̂−1

u (`−1)u(`)

(1−µ)−1+µ−1uH(`)Φ̂−1
u (`−1)u(`)

2: e` = d∗(`)− uH(`)f̂(`− 1)
3: f(`) = f̂(`− 1) + ke`
4: R−1(`) = µ−1Φ̂−1

u (`− 1)− µ−1kuH(`)Φ̂−1
u (`− 1)

5: ∆λ = λ`−1

((
3
2 − µ

)
− δ̂2

2‖f(`)‖2

)
6: if ∆λ > 0 then
7: Apply Algorithm 1 to obtain Φ̂−1

u (`) and f̂(`)
8: λ` = µλ`−1 + ∆λ
9: else

10: λ` = µλ`−1

11: Φ̂−1
u (`) = R−1(`)

12: f̂(`) = f(`)
13: end if
14: return f̂(`), Φ̂−1

u (`), λ`

V. ANALYSIS WITH SPEECH SIGNALS

The proposed algorithm is evaluated in a vehicle, in driving
noise scenario, which consists of road noise as well as transient
noises transmitted by passing vehicles or horns. We also chal-
lenge the algorithm by opening the windows, turning on the air
conditioning or activating the wipers. The driver is considered
to be the single desired speaker and is instructed to speak and
move naturally. The desired speech signal is contaminated by
the additive noise and captured by a microphone array.

We apply the GSC algorithm with the RLS procedure for
ANC realization, comparing the performance of the traditional
RLS form with our proposed algorithm. The microphone
signals are sampled at fs = 16KHz. We use an STFT with
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(a) Input signal.

(b) Traditional RLS algorithm output.

(c) Proposed Modified RLS algorithm output.

Fig. 1: Traditional vs Modified RLS algorithm.

hamming window of length K = 512 with an overlap of
η = 50% between successive frames. The RLS forgetting
factor is set to µ = 0.98 and for the proposed algorithm,
the ANC norm square is bound by δ̂ = 10dB.

While for the most part of the utterance the traditional RLS
based GSC does not exhibit any artifacts, we identify sudden
bursts associated with transient noises. Figure 1b depicts an
example of such artifacts. It can be clearly observed at around
1.5sec for the traditional RLS at the lower frequencies. The
input signal, shown in Figure 1a, shows no anomalies around
that time-frames, implying that the identified artifacts are
attributed to the beamforming operation.

The proposed Modified RLS algorithm controls these ar-
tifacts through δ̂. In Figure 1c it can be observed that the
sudden burst is mitigated. Since the algorithm is only active
in relevant time-frequency bins (that is when ∆λ` > 0), the
overall noise reduction is maintained.

VI. SUMMARY

In this contribution we proposed the Modified RLS proce-
dure for the realization of the ANC block of the GSC structure.

We showed that with minor modification to the traditional RLS
procedure, the RLS algorithm can be adjusted to recursively
maintain sufficiently small norm ensuring mitigation of arti-
facts attributed to array imperfection.

The proposed algorithms has two drawbacks. Unlike the
projected LMS, we are not assured that the norm constraint
is satisfied for each time-frame. The second drawback is
around the computational complexity of Φ̂−1

u (`) which is of
O(M3). However, we must note that this computation is only
required when the square norm of the ANC exceeds δ̂ and
results with an Hermitian matrix, which can further reduce
the computational load. This property can significantly reduce
multiplication complexity in comparison to complex matrices
multiplication. Furthermore, the modified matrix inversion
algorithm can be split between several time frames, thereby
reducing its calculation complexity to O(M2).

While the described drawbacks must be admitted, our
proposed algorithm is an enabler for an RLS-based ANC im-
plementation. Without any robustness considerations, artifacts
should be expected. These artifacts, even if transients and are
rare, can impact the listening quality. On top of the algorithm
being essential, it is easily implemented and it holds the
important ability to achieve the desired performance without
requiring the explicit value of λ`, which has intricate relation
to the known δ̂. Furthermore, the algorithm use is not restricted
to the discussed scenario and can be easily implemented in any
RLS based system.
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