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Abstract—This paper proposes a time-varying Convolutional
BeamFormer (CBF), called a switching CBF, which can capture
time-varying characteristics of an observed signal to perform
beamforming and dereverberation accurately and simultaneously.
With a switching CBF, time frames of a time-varying observed
signal are grouped into several clusters, each of which can be
taken as time-invariant, and individual clusters are separately
processed by different time-invariant CBFs. Conventionally, a
switching BeamFormer (BF) and a switching Weighted Prediction
Error (WPE) dereverberation filter have been shown effective
for the respective problems. This paper presents a method
to integrate and jointly optimize them based on Maximum
Likelihood (ML) estimation and extends it to work with a
Neural Network (NN)-based spectral prior based on Maximum a
Posteriori (MAP) estimation. Experiments show that a switching
CBF largely outperforms a conventional time-invariant CBF in
terms of improved ASR scores.

Index Terms—Beamforming, dereverberation, microphone ar-
ray, switching system, maximum likelihood estimation

I. INTRODUCTION

When a speech signal is captured by distant microphones,
e.g., in a conference room, it often contains such interference
signals as reverberation, diffuse noise, and voices from ex-
traneous speakers. They all reduce the intelligibility of the
captured speech and often cause serious degradation in many
speech applications, such as hands-free teleconferencing and
Automatic Speech Recognition (ASR).

Mask-based BeamFormers (BFs) [1]–[3] have been actively
studied to minimize the aforementioned interference signals
in acquired signals. Masks indicate the time-frequency (TF)
regions that are dominated by target speakers’ voices and
are used to estimate acoustic transfer functions (ATFs) from
the speakers to microphones. Many useful techniques have
been proposed to estimate masks, e.g., neural networks (NNs)
[3], [4] and clustering of microphone array signals [5], [6].
The mask-based BF approach effectively optimizes BFs and
Convolutional BFs (CBFs) that can jointly perform denoising,
dereverberation, and source separation [7]–[9].

On the other hand, considering that the interference signals
to be reduced are time-varying, e.g., due to their time-varying
power and presence, a time-varying BF largely outperforms
a time-invariant BF in terms of estimation accuracy [10],
[11]. An efficient way to implement this idea is to use a
switching BF [12]. A switching BF is modeled by a weighed
sum of a set of time-invariant BFs and achieves time-varying
beamforming making the weight time-varying. The weight and
BF coefficients are jointly optimized by minimizing the noise
power in the observed signal [13], [14]. Also, a time-varying
Weighted Prediction Error (WPE) dereverberation filter with
a switching mechanism, called a switching WPE filter [15],

outperformed a conventional time-invariant WPE filter [16],
[17].

To establish a comprehensive framework of a mask-based
CBF [8], [18], this paper presents a new formulation called a
switching CBF that incorporates the switching mechanism. It
consists of a switching weighted Minimum-Power Distortion-
less Response (wMPDR) BF and a switching WPE filter [15]
and jointly optimizes them assuming that the sources are time-
varying Gaussians with time-varying variances, similar to a
conventional mask-based CBF [8]. The optimization algorithm
is derived based on Maximum Likelihood (ML) estimation and
extended to work with an NN-based spectral prior based on
Maximum a Posteriori (MAP) estimation. Experiments with
noisy reverberant speech mixtures show that the proposed
switching CBF largely outperforms the conventional state-of-
the-art, a mask-based CBF [8], in terms of improved ASR
performance.

The following are the contribution of this paper: 1) the
formulation of a switching BF/CBF based on a time-varying
Gaussian source model; 2) derivation of an algorithm for
jointly optimizing switching BFs and a switching WPE filter;
and 3) experimental evaluation of the new framework. In the
remainder of this paper, a probabilistic model of a time varying
CBF and its implementation using a switching mechanism
are described in Sections 2 and 3. Section 4 derives the
optimization algorithm. Experiments and concluding remarks
are given in Sections 5 and 6.

II. PROBABILISTIC MODEL OF TIME-VARYING CBF

This section presents a probabilistic model of a time-
varying CBF for developing a switching CBF in the next
section. Suppose that N source signals are captured by M
distant microphones with reverberation and background noise.
Let xm,t,f be the captured signal at the mth microphone
and a time-frequency point (t, f) in the short-time Fourier
transform (STFT) domain, and let (·)> denote a non-conjugate
transpose, and the captured signal at all the microphones,
xt,f = [x1,t,f , . . . , xM,t,f ]> ∈ CM , is modeled:

xt,f =

N∑
n=1

dn,t,f +

N∑
n=1

ln,t,f + vt,f , (1)

dn,t,f = hn,fsn,t,f for all n, (2)

where dn,t,f = [dn,1,t,f , . . . , dn,M,t,f ]> ∈ CM is the direct
signal plus the early reflections of the nth source [19], [20],
ln,t,f is the source’s late reverberation, and vt,f is the diffuse
noise. This paper deals with dn,t,f for each n as a signal
to be estimated, called a desired signal, and models it by a
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product of a time-invariant Acoustic Transfer Function (ATF)
hn,f ∈ CM and nth clean source signal sn,t,f ∈ C in Eq. (2).
Note that for estimating each desired signal, dn,t,f , the other
components in Eq. (1) are time-varying interference signals to
be reduced. Hereafter, we omit frequency index f in all the
symbols assuming that the same processing is independently
applied to each frequency.

We estimate the desired signals by defining a time-varying
CBF as[

yt
ṽt

]
=

[
Wt Bt

W̄t B̄t

]H [
xt
x̄t

]
∈ CM , (3)

x̄t = [x>t−D, . . . ,x
>
t−L+1]> ∈ CM(L−D),

where yt = [y1,t, . . . , yN,t]
> ∈ CN is an estimate of the

desired signals at the reference channel [21], i.e., the estimate
of dr,t = [d1,r,t, . . . , dN,r,t]

>, letting r be the index of the
reference channel, Wt ∈ CM×N and W̄t ∈ CM(L−D)×N

are the CBF’s time-varying coefficient matrices applied to the
current captured signal xt and the past captured signal se-
quence x̄t, and (·)H is an Hermitian transpose. Here prediction
delay D (≥ 1) is introduced to set the dereverberation goal
to reduce only the late reverberation and preserve the desired
signals [16]. In contrast, ṽt ∈ CM−N is an auxiliary output
corresponding to a noise estimate, and Bt ∈ CM×(M−N)

and B̄t ∈ CM(L−D)×(M−N) are auxiliary coefficient matrices
to generate ṽt. They are just introduced for deriving a ML
objective in the following.

To derive the ML objective, we assume that a certain desired
CBF satisfies the following conditions:

1) Let wn,t be the nth column of Wt and assume that the
ATF hn of the nth source is given (or can be estimated).
Then wn,t and Bt for all n and t satisfy

wH
n,thn = hn,r and BH

t hn = 0, (4)

i.e., wn,t does not modify the nth desired signal at
reference channel r in xt (distortionless constraint), and
Bt blocks all the desired signals in the estimated noise
(blocking constraint).

2) The CBF outputs, yn,t and ṽt for all n and t, are
mutually independent, and satisfy

p({yn,t}n,t, {ṽt′}t′) =
∏
n,t

p(yn,t)
∏
t′

p(ṽt′), (5)

3) Each yn,t can be modeled by a time-varying Gaussian
with a mean zero and time-varying variance λn,t as

p(yn,t;λn,t) =
1

πλn,t
exp

(
−|yn,t|

2

λn,t

)
. (6)

Then we obtain the ML objective to be maximized to estimate
the CBF by following the discussions in our previous papers
[18], [22, proposition 7] and disregarding the terms unrelated
with yt:

L(θ) = −
N∑
n=1

(
|yn,t|2

λn,t
+ log λn,t

)
(7)

s.t. wH
n,thn = hn,r for all n and t,

Fig. 1. Processing flow of a switching CBF

where θ = {{λn,t}n,t, {Wt}t, {W̄t}t}. Although the discus-
sions in previous papers [18], [22] were given for a time-
invariant system, extending them for the time-varying CBF is
straightforward.

Finally, similar to a conventional mask-based CBF [7], [8],
we introduce a factorized form of the time-varying CBF as[

Wt

W̄t

]
=

[
IM
−Gt

]
Wt, (8)

where Gt ∈ CM(L−D)×M is a coefficient matrix that satisfies
W̄t = −GtWt, and IM ∈ RM×M is an identity matrix.
Using this factorization, yt in Eq. (3) is obtained as

zt = xt −GH
t x̄t, (9)

yt = WH
t zt, (10)

where Eq. (9) is a WPE filter yielding a dereverberated signal
zt from xt using a prediction matrix Gt and Eq. (10) is a
(non-convolutional) BF Wt that extracts yt from zt.

III. CONFIGURATIONS OF SWITCHING CBF

Because the above time-varying CBF is so flexible that over-
fitting to the observed signal can easily happen, we need to
introduce certain constraints to avoid it. For this purpose, we
introduce switching mechanisms into the WPE filter and the
BFs (Fig. 1). They are composed of a set of time-invariant
WPE filters and time-invariant BFs, which are controlled by
separate time-varying switches, and mathematically modeled
by the sums of the time-invariant filters with time-varying
switching weights as

Gt =

I∑
i=1

γi,tGi and wn,t =

J∑
j=1

δn,j,twn,j , (11)

where I and J are the numbers of the switching states of
the WPE filter and the BFs, Gi for 1 ≤ i ≤ I is a prediction
matrix of the ith time-invariant WPE filter, wn,j for 1 ≤ j ≤ J
is the jth time-invariant BF for the nth source, and γi,t ∈ R
for 0 ≤ γi,t ≤ 1 and δn,j,t ∈ R for 0 ≤ δn,j,t ≤ 1 are their
time-varying switching weights satisfying

∑I
i=1 γi,t = 1 and∑J

j=1 δn,j,t = 1. In this paper, for brevity, we only consider
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hard switches, and allow γi,t and δn,j,t to take only binary
values, 0 or 1.

In the above configuration, we introduced separate switches
into the WPE filter and BFs, considering that the interference
signals to be reduced by the respective filters have different
time-varying characteristics. Also, a time-varying WPE filter
was shared by all the BFs. Different configurations could
be considered, for example, by making certain parts of the
switches work synchronously, and/or by introducing different
WPE filters separately for individual BFs. Such configurations
might be investigated in future work.

IV. OPTIMIZATION ALGORITHM

This section describes the algorithm that optimizes the
switching CBF based on the ML objective in Eq. (7). We
next present a few variations, including one that works with
an NN-based spectral prior based on MAP estimation.

A. Joint optimization algorithm
Based on Eqs. (9), (10), and (11), the output of switching

CBF yn,t can be written as

zi,t = xt −GH
i x̄t, (12)

yn,i,j,t = wH
n,jzi,t, (13)

yn,t =
∑
i,j

δn,j,tγi,tyn,i,j,t. (14)

Here, the parameters to be optimized consist of the following
parameter subsets: ΘG = {Gi}i, Θw = {wn,j}n,j , Θγ =
{γi,t}i,t, Θδ = {δn,j,t}n,j,t, and Θλ = {λn,t}n,t.

Because no closed form solution is known for the optimiza-
tion, we use iterative estimation based on a coordinate ascent
method [23]. It updates each parameter subset alternately by
fixing the other parameter subsets, and iterates the update until
convergence is obtained. The following describes each update
step in the iteration.

1) Updates of ΘG and Θγ: First, extracting the terms
related with ΘG and Θγ from Eq. (7), we obtain

L(ΘG,Θγ) = −
∑
t,n,i,j

δn,j,tγi,t
λn,t

|wH
n,j

(
xt −GH

i x̄t
)
|2. (15)

Since the above equation is a simple quadratic form in terms
of Gi, we can obtain a closed form solution for it when fixing
the other parameters. Let gi = vec(Gi), where vec(A) is an
operation to reshape a matrix A = [a1, . . . ,aM ] to a vector
a = [a>1 , . . . ,a

>
M ]>. Then the solution is given by

gi ← Ψ+
i vec(Φi) ∈ CM

2(L−D), (16)

where (·)+ denotes a pseudo-inverse,1

Ψi =
∑
j,n

(
wn,jw

H
n,j

)∗ ⊗Rn,i,j ∈ CM
2(L−D)×M2(L−D),

(17)

Φi =
∑
j,n

Pn,i,j
(
wn,jw

H
n,j

)
∈ CM(L−D)×M , (18)

1We used diagonal loading for calculating a pseudo-inverse in our experi-
ments.

Rn,i,j =
∑
t

δn,j,tγt,i
λn,t

x̄tx̄
H
t ∈ CM(L−D)×M(L−D), (19)

Pn,i,j =
∑
t

δn,j,tγi,t
λn,t

x̄tx
H
t ∈ CM(L−D)×M , (20)

(·)∗ is a complex conjugate, and ⊗ is a Kronecker product.
After updating zi,t by Eq. (12), γi,t is updated by

γi,t ←

{
1 for i = argmini′

∑
n

|
∑

j δn,j,tw
H
n,jzi′,t|

2

λn,t

0 otherwise.
(21)

2) Updates of Θw, Θδ , and Θλ: Extracting terms related
with Θw and Θδ from Eq. (7) yields

L(Θw,Θδ) = −
∑
n,j

wH
n,jΣn,jwn,j , (22)

Σn,j =
∑
t

δn,j,t
λn,t

ztz
H
t , (23)

s.t. wH
n,jhn = hn,r for all n and j,

where zt =
∑
i γi,tzi,t is the output of the switching WPE

filter. Because the above objective is identical to that of a
wMPDR BF [7], [24] except that it includes a time-varying
weight δn,j,t, we call the BF a switching wMPDR BF. wn,j ,
which maximizes Eq. (22) when fixing the other parameters,
is obtained as

wn,j ←
h∗n,rΣ

−1
n,jhn

hH
nΣ−1n,jhn

. (24)

Then δn,j,t is updated as

δn,j,t ←
{

1 if j = argminj′ |wH
n,j′zt|2,

0 otherwise.
(25)

Finally, λn,t is updated as

yn,t =
∑
j

δn,j,tw
H
n,jzt, (26)

λn,t ← |yn,t|2. (27)

B. Variations
Here we introduce three variations of the above proposed

algorithm for an ablation evaluation of the proposed switching
CBF in experiments.

1) Switching wMPDR BF: The first is just composed of a
switching BF and optimized based on the objective in Eq. (7).
The solution is obtained by Eqs. (23)-(27) and by replacing zt
in the equations with xt. This is a switching wMPDR BF. It is
different from a conventional switching BF [12] because it is
based not on the minimization of the noise power but on the
ML objective, which considers the time-varying characteristics
of the source variances.

2) Separate optimization of switching CBF: The second
variation uses the switching CBF structure in Fig. 1 although
it separately optimizes the WPE filter and the BFs. The WPE
part is identical to the conventional switching WPE filter [15],
and the BF part is identical to the switching wMPDR BF; they
are connected in a cascade configuration. Overall optimality
is not guaranteed with this variation.
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TABLE I
WERS (%) OBTAINED WITH VARIOUS #STATES OF A WPE FILTER AND BFS AFTER FIVE ITERATIONS OF SEPARATE AND JOINT OPTIMIZATIONS W/ AND

W/O AN NN SPECTRAL PRIOR USING M = 2 AND 3 MICROPHONES. WER OF CAPTURED SIGNALS WITH NO SPEECH ENHANCEMENT WAS 62.5%.

M = 2 M = 3
Separate optimization Joint optimization Separate optimization Joint optimization

I w/o NN prior w/ NN prior w/o NN prior w/ NN prior w/o NN prior w/ NN prior w/o NN prior w/ NN prior
(#States J (#States of BFs) J (#States of BFs)
of WPE) 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
No WPE 48.0 45.2 44.0 48.3 45.8 44.0 48.0 45.2 44.0 48.3 45.8 44.0 39.6 36.4 35.2 40.2 36.4 36.1 39.6 36.4 35.2 40.2 36.4 36.1

1 43.5 40.2 38.8 44.5 41.7 39.5 42.5 39.5 38.3 42.8 39.6 38.3 33.8 31.1 29.8 34.5 30.8 29.8 32.7 29.4 29.0 33.4 29.1 29.4
2 44.4 40.9 40.2 45.5 41.7 40.8 41.3 39.3 38.4 40.4 38.2 37.8 35.2 32.5 31.4 36.6 32.3 30.7 32.1 29.2 29.6 32.2 29.7 28.8

3) Using an NN-based spectral prior: The third variation
introduces a power spectral prior to each source model using
an NN. We adopt inverse-Gamma distribution IG(λ;α, β) =
βαΓ(α)−1λ−(α+1) exp(−β/λ) as the conjugate prior of the
Gaussian source model and set a source power spectrum, ηn,t,
estimated by an NN to β. Then instead of using Eq. (27), λn,t
is updated based on MAP estimation by

λn,t ← (|yn,t|2 + ηn,t)/(α+ 2). (28)

In experiments, we set α = 1 and adopted an NN used in our
previous paper [8].

V. EXPERIMENTS

This section experimentally evaluates the performance of
the switching CBF with a particular focus on the effect of the
switching mechanism in combination with joint optimization
and the NN prior (Section IV-B3).

A. Dataset, methods compared, and evaluation metrics

To evaluate the estimated source signals, we used the
REVERB-2MIX dataset [25], which is composed of noisy
reverberant speech mixtures. Each mixture was created by
mixing two utterances (i.e., N = 2), extracted from the
REVERB Challenge dataset (REVERB) [26]. Following the
REVERB-2MIX guideline, evaluation was performed using
separated signals that correspond to the evaluation set in
REVERB.

To examine the effect of the switching mechanism, the
number of switching states was varied over I = 1, 2 for a WPE
filter and J = 1, 2, 3 for each wMPDR BF. We also examined
the wMPDR BF without combining it with a WPE filter. ATF
hn of each speech source was estimated from the input of
each wMPDR BF based on a method from our previous paper
[8], i.e., based on time-frequency masks obtained using an NN
and eigenvalue decomposition with noise covariance whitening
[27], [28]. We set the frame length and the shift to 32 and
8 ms and used a Hann window for the short-time analysis.
The sampling frequency was 16 kHz. For a WPE filter, the
prediction delay was set at D = 2 and the prediction filter
length was set at L = 10. The total number of optimization
iterations was set at 10, and we updated the BFs twice in each
iteration as it improved the performance.

We evaluated the ASR scores of the separated utterances
using RealData in REVERB-2MIX. We used a baseline ASR
system developed for REVERB with Kaldi [29] that was

1 3 5 7 9

38

40

42

44

W
E

R
 (

%
)

#Iterations

(a) M = 2

1 3 5 7 9
28

30

32

34

#Iterations

I=1, J=1, w/o NN prior

I=2, J=3, w/o NN prior

I=2, J=3, w/ NN prior

(b) M = 3

Fig. 2. WERs (%) obtained after each iteration step of joint optimization
using a conventional CBF (I = 1 and J = 1) and switching CBFs (I = 2
and J = 3) with/without a NN prior.

composed of a trigram language model, and a TDNN acoustic
model trained using a lattice-free MMI and online i-vector
extraction. They were trained on the REVERB training set.

B. Evaluation results

Table I shows the WERs of the enhanced signals obtained
after five iterations of separate and joint optimizations with
various combinations of I and J with/without the NN prior.
“No WPE” with J = 1 represents a conventional wMPDR
BF [7] and (I, J) = (1, 1) represents a conventional CBF
composed of a conventional WPE filter followed by a conven-
tional wMPDR BF [8]. “No WPE” with J ≥ 2 represents a
switching wMPDR BF, and the others are switching CBFs.

Let us first look at the results with M = 2 microphones
on the table’s left half. Increasing the number of wMPDR
BF states, J , almost always reduced the WERs under all the
conditions. Although using a conventional WPE filter (I = 1)
as pre-processing always reduced the WERs from “No WPE,”
using a switching WPE filter (I = 2) as pre-processing with
the separate optimization increased the WERs with/without
the NN-prior. This result may be because the time-varying
filtering of the switching WPE filter unfavorably affected the
performance of the following switching BFs. In contrast, using
joint optimization almost consistently improved the WERs
under identical conditions, especially when combined with
the NN prior. This result suggests that joint optimization
effectively mitigated the unfavorable effect on the BFs caused
by the time-varying filtering of the switching WPE filter.

The right half of the table shows the results with M = 3
microphones. Although more exceptions are included in them,
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they overall have the same tendency as those with M = 2
microphones.

Finally, Fig. 2 shows the convergence curves of the WERs
obtained using the conventional CBF and switching CBFs
with/without the NN prior. All the CBFs were estimated based
on joint optimization. The figure clearly demonstrates the
effectiveness of the switching mechanism and the NN prior
introduced to the switching CBFs.

VI. CONCLUDING REMARKS

This paper proposed a switching CBF that can capture the
time-varying characteristics of observed signals to perform
accurate and simultaneous dereverberation and beamforming.
A switching CBF is composed of a switching WPE filter fol-
lowed by switching wMPDR BFs, and jointly optimizes their
time-varying switching weights and all the filter coefficients.
Experiments showed that 1) the switching BFs with/without
a WPE filter consistently improved the performance from
conventional BFs in terms of ASR scores and 2) the switching
WPE filter further improved the performance when it was
jointly optimized with the switching BFs, especially in combi-
nation with an NN spectral prior. The proposed switching CBF
(joint optimization with an NN prior) improved the WERs
from 42.5% to 37.8% for M = 2 and from 32.7% to 28.8%
for M = 3 when compared with the best scores obtained by
a conventional CBF (joint optimization without an NN prior).
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