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Abstract—Automated solutions to multi-channel signal enhancement
for improving speech communication in noisy environments has become a
popular goal among the research community. Many proposed approaches
focus on adapting to speech signals based on their temporal characteris-
tics but these methods are primarily limited to specific types of desired
and undesired sound sources. This paper outlines a new method to adapt
to desired and undesired signals using their spatial statistics, independent
of their temporal characteristics. The method uses a linearly constrained
minimum variance (LCMV) beamformer to estimate the relative source
contribution of each source in a mixture, which is then used to weight
statistical estimates of the spatial characteristics of each source used for
final separation. The proposed method allows for instantaneous desired
and undesired source selection, a useful ability for the enhancement of
conversations. The simulated results show that the method can adapt
to the targeted source in noisy mixture signals and that under realistic
conditions it is also capable of reaching ideal MVDR performance.

Index Terms—Adaptive beam-forming, signal enhancement, micro-
phone array, multi-channel processing, parameter estimation

I. INTRODUCTION

The ability to extract clear speech from noisy environments caused
by interfering speakers, reverberation and/or ambient noise, using
spatial processing algorithms, has been highly sought after in recent
years [1]. Common use cases that benefit from extracting only the
desired signals of interest include automatic speech recognition [2]–[4],
hearing-aid signal enhancement [5]–[7], on-line voice chat, video
conferencing [8]–[10] as well as numerous other applications, such
as real-time enhancement of voices in noisy restaurants.

Many data-independent methods have been considered as robust
solutions to reducing the noise in signals. For example, in the area
of spatial signal enhancement, which focuses solely on leveraging
signal characteristics in the spatial domain, algorithms known as
beamformers, for example delay and sum, and super-directive (such
as maximum directivity and differential microphone arrays), have
been studied extensively [11]–[13].

Other more optimal approaches require statistical knowledge of
both the desired source and the undesired noise [12], [14]. Methods
such as minimum-variance distortionless-response (MVDR) and
linearly-constrained minimum-variance (LCMV) provide optimal
filter coefficients for separating the two types of signals whilst not
distorting the desired signal. The LCMV formulation allows for a
linear constraint on multiple transfer functions if they are available.
Alternative formulations relying only on the inference of the desired
or undesired, as well as information of the mixture of both, are
known as the minimum-power distortionless-response (MPDR) and
linearly-constrained minimum-power (LCMP) methods.

While the aforementioned approaches are capable of providing
an optimal solution given knowledge of the signal parameters, it
is still challenging to estimate those parameters from the signal
alone. Several methods for spatial filter parameter estimation exist,
however, they often assume speech source signals. The methods
typically consider the temporal activity and probability of whether
or not speech has occurred [15], [16]. These are usually classified as
voice activity detectors or the popular single-channel speech presence

probability (SPP) [16]. The SPP has also been investigated for use
with multi-channel arrays to leverage the spatial domain to determine
the probability of speech in different spatial locations [17], [18]. These
methods rely on the assumption that speech is either the target signal
of interest, primarily the noise signal or both. This assumption limits
the ability of speech based methods, particularly when interfering
sources may be music, vehicles, animals or otherwise that are not
temporally or spectrally similar to speech. Other techniques use long
temporal history and statistics to separate sources, which can result
in long latency in real-time applications [19].

Given the limitations of relying on speech signals only, we propose
a spatial signal enhancement method that is independent of the spectral
and temporal statistics of the desired and undesired source signals.
The proposed method performs the adaptive parameter estimation
solely using spatial domain processing techniques. The proposed
algorithm’s independence on the type of source signal is especially
valuable when spatial noise sources other than speech are present. We
assume that each source contributes a portion of signal to the received
samples and that the relative contribution correlates to the usefulness
of the samples in estimating spatial source parameters. Under these
assumptions, the method starts with initial direction of arrival (DOA)
estimates [20] and tracking to determine the location of the sources.
The locations are used to seed an LCMV process that is then used to
determine a relative source contribution estimate (SCE) of each source
to the currently received signal. The SCE value is used as a weight
for adaptively learning statistical parameters of the sound sources in
noisy reverberant environments, which are also used to compute the
parameters of a final set of MVDR filters. The final filters are used to
perform spatial signal enhancement thus enhancing a selected desired
sound source. The parameters used for the final MVDR are fed back
into the first LCMV and, hence, adaptively refined over time.

In section II, the signal model used throughout the rest of the
paper is introduced along with a brief description of spatial filtering
and parameter estimation. A description of the proposed parameter
estimation method is given in section III, which goes into detail on
the proposed SCE method and the associated statistical adaptation.
The setup used for the simulated analysis along with results from the
analysis of the proposed methods are outlined in section IV and the
paper is concluded in section V.

II. PROBLEM DESCRIPTION

Throughout this work, we consider the scenario where we have
several, potentially concurrent, sound sources in a room with ambient
noise. The challenge is that each source is mixed together in the
received microphone signals. Our goal is to extract a chosen source
while removing the remaining sources and ambient noise. The
extraction process can be accomplished via spatial filtering. Typically,
spatial filtering requires knowledge of the desired and undesired
components of the mixture, these components are commonly termed
the parameters of the model. An open challenge with spatial filtering
is estimating the correct parameters for signal separation.
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A. Signal Model

Assuming the received signals at the microphones are a mixture of
individual spatially stationary sources with locations ψ ≡ (θ, φ), in
the time-frequency domain we have,

xM×1(t, f) =

N∑
n=1

sn(t, f) · hM×1(f, ψn) + uM×1(t, f), (1)

x = H · s + u, (2)

where sn(t, f) ∈ C is a source signal, hM×1(f, ψn) ∈ CM×1 is an
array transfer function (ATF) for the M element microphone array in
the direction of the n-th source, ψn ≡ (θn, φn), ∀n ∈ {1, . . . , N} and
uM×1(t, f) ∈ CM×1 is a noise signal containing all unwanted sounds.
We assume that hM×1(f, ψn) sufficiently describes the response over
the time segment of xM×1(t, f). In complete vector notation, H
is the ATF matrix of size M ×N , s is the source vector of size
N × 1 and u is the noise vector of size M × 1. Throughout this
work we denote discrete time with t and discrete frequency with f .
For brevity, from here on we omit the function arguments of time,
(temporal) frequency, angular position and subscripted size, unless
they are necessary to facilitate a description. In addition, from here
on, symbols noted with accents are an estimated value or have been
derived from one.

B. Spatial Filtering

A popular method for separating a particular desired source signal
from the noise and other interfering sources is spatial filtering, such
as MVDR or LCMV. We describe the separation process in this work
with an MVDR formulation, however, an LCMV process may be a
reasonable alternative for some applications. The MVDR filter for
extracting the signal for a desired index, n, is given by,

wn(t, f) =
Φ−1

n (t, f) · hn

hH
n ·Φ−1

n (t, f) · hn

, (3)

where (·)H denotes a Hermitian transposition of the corresponding
matrix, the transfer function of the desired source is hn and all the
remaining undesired signals for that desired source are defined by
the noise covariance matrix, Φn(t, f). The filter from (3) is used to
extract an approximation of the desired source signal frame from the
received microphone signals with,

sn ≈ wH
n · x. (4)

C. Parameter Estimation

In (3), we assume that hn and Φn are known or can be reliably
estimated. These two parameters are often obtained off-line by a
calibration process (transfer function measurement and/or singular
value decomposition) that is provided clean samples of the desired
and/or undesired sources.

The off-line approach fails in a real-time scenario as desired and
undesired samples are unknown. A voice activity detector (VAD) is a
popular approach for understanding when to use the correct samples,
however, VAD’s are not always accurate in noisy conditions and are
tuned to speech signals. Another method is the multi-channel speech
presence probability (M-SPP), however, this method is also reliant
on the statistics of speech. The challenge of correctly and reliably
estimating which components of the signal are desired and which are
undesired, so that they can be filtered out, is the crux of the problem.

Parameter Estimation
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Covariance
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Fig. 1. High level system diagram of the proposed parameter estimation
approach to spatial filtering.

III. PROPOSED PARAMETER ESTIMATION METHOD

In this section, we outline the proposed approach to estimating the
spatial filtering parameters in real-time. The method assumes that
each source contributes a portion of signal to any given frame of
samples. We also assume that the relative contribution a source makes
to a frame correlates to the usefulness of that frame in estimating the
parameters for that source. A high level depiction of the proposed
spatial filtering method is shown in Fig. 1.

A. Initially Required Values

We first start by describing the values required for initialization of
the process depicted in Fig. 1 and indicate estimated values using a
caret. We begin with the assumption that we can obtain a reasonable
estimate (e.g. by measurements or other simulations) of the free-field
relative transfer function (RTF), ĥ(f, ψ), of size M × 1, for a set of
ψ that is representative of the response in most directions [1], [21].

The initial noise covariance matrices are isotropic noise covariances
obtained by using the estimated RTFs,

Φ̂n(0, f) =
∑
p∈P

ĥ(f, p) · ĥH(f, p), (5)

where t = 0 and P is a set of points, p ≡ (θ, φ), sampled
approximately equidistant on a sphere.

We also assume that we know, or can reliably estimate, the N
directions, {ψn}Nn=1, of the sound sources that we wish to control
using the adaptive procedure. For example, by using a DoA and
tracking algorithm [20].

B. Multi-source Contribution Estimation

In this section we describe the proposed multi-source contribution
estimation procedure. We begin with using a linearly-constrained
minimum-variance (LCMV) beamformer, which is described by,

ŵn = Φ̂−1
n · Ĥ ·

(
ĤH · Φ̂−1

n · Ĥ
)−1

· gn, (6)

where ŵn is of size M × 1, Φ̂n is M ×M , Ĥ is M ×N and g is
N × 1. In (6), we use a set of RTFs for each localized source,

Ĥ =
[
ĥ(f, ψ1) ĥ(f, ψ2) · · · ĥ(f, ψN )

]
. (7)

We then attempt to extract each source signal in the scene arriving
from each tracked direction,

ŝn = ŵH
n · x, (8)

where the noise covariance, Φ̂n(t, f), is initially the isotropic
covariance in (5) at t = 0 and a source is selected with the constraints,

gn =
[
0n−1×1 11×1 0N−n×1

]T
. (9)

Using the estimated DoA’s, we arrive at an N × 1 size vector of
estimated source signal strengths,

ŝ =
[
ŝ1 ŝ2 · · · ŝN

]T
. (10)

These source signal strengths are the basis of the multi-source
contribution estimation method.
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C. Contribution Equalization and Normalization

In order to ensure that the contribution estimates for all sources
both, sum to unity and are valid during noise only frames, for which
the LCMV may be invalid, an equalization is performed using the
noise-only excited LCMV auto-correlation values. The total energy
of the equalized signal is then used to normalize the contribution
estimates.

The noise-only LCMV output gain, used for equalization, is obtained
by finding the auto-correlation values of the LCMV from (6) initialized
with the isotropic noise covariance from (5). We start by finding the
noise-only LCMV energy for each source,

Wu = Φ̂−1
n (0, f) · Ĥ ·

(
ĤH · Φ̂−1

n (0, f) · Ĥ
)−1

· IN×N (11)

and then the equalization values for each source contribution estimate
are given by the N × 1 vector,

û =
√

diag(WH
u ·Wu). (12)

Finally, we equalize for noise-only lower bound values and
normalize to the total energy of equalized signal strengths to arrive
at an estimate of the contribution, ĉ, of each source to the particular
time-frequency sample,

ĉ(t, f) =
ŝ� û

||̂s� û||1
, (13)

where � is the Hadamard division operator. In an effort to make the
estimate more robust to spatial aliasing of the array and microphone
self-noise, we propose an optional step of using the mean contribution
over a useful range of frequencies for the particular application, as,

c(t) =
1

F

∑
f∈F

ĉ(t, f), (14)

where F is a set of size F containing all pre-defined frequencies for
which the mean is taken and an overbar denotes the direct result of
a mean. Otherwise, the values from (13) can be used to weight the
contributions per frequency directly. The estimated contribution can
then be used to weight statistics from which the parameters of the
MVDR beamformer in (3) can be computed.

D. Parameter Adaptation

We propose to replicate, for the estimated number of sources,
the sample covariance matrix obtained from the current frame of
microphone signals and weight it by the corresponding element of ĉ
from (13),

Ω̂n = ĉn · x · xH . (15)

We propose to use a buffering set, Ω̃n,l, l ∈ {1, ..., L}, of
L weighted sample covariance matrices for each source and
two companion sets containing the associated contribution values,
c̃n,l, l ∈ {1, ..., L}, and the time at which they were included in the
set, t̃n,l, l ∈ {1, ..., L}. We denote the buffering and companion sets
using a tilde. The buffering set is initialized with covariances from
(5) and the companion sets with zeros,

Ω̃n,l =
{

Φ̂n(0, f)
}L

l=1
, (16)

c̃n,l = {0}Ll=1 , (17)

t̃n,l = {0}Ll=1 . (18)

At each discrete time, t ∈ Z, a new weighted sample covariance
matrix, Ω̂n, and associated contribution, ĉn, are added to the sets

such that they replace the element of the buffering set with the lowest
corresponding ĉn if their contribution value is greater,

Ω̃n,argminl(c̃n,l) = Ω̂n, s.t. ĉn > min
l

(c̃n,l) , (19)

c̃n,argminl(c̃n,l) = ĉn, s.t. ĉn > min
l

(c̃n,l) , (20)

t̃n,argminl(c̃n,l) = t, s.t. ĉn > min
l

(c̃n,l) . (21)

In order to ensure that the learned statistics remain relevant over
extended periods of time, a forgetting process is implemented that
naturally forces the statistics back to those that are under more
generalized assumptions, e.g. a specular noise field based on the
provided DoA of the noise sources or a diffuse noise field. The
forgetting procedure is defined as,

Ω̃n,argminl(t̃n,l) = ĥ(f, ψn)·ĥ(f, ψn)
H , s.t. t−T > min

l

(
t̃n,l

)
,

(22)
c̃n,argminl(t̃n,l) = 1/N, s.t. t− T > min

l

(
t̃n,l

)
, (23)

t̃n,argminl(t̃n,l) = t, s.t. t− T > min
l

(
t̃n,l

)
, (24)

where T is a time-based forgetting threshold after which statistics
are forgotten. The procedure that is (19), (20), (21), (22), (23) and
(24), is performed as an update at every new time frame.

We then estimate the covariance matrix by taking the average as,

Ωn =
1

L

L∑
l=1

Ω̃n,l. (25)

The statistical adaptation process is applied for all frequency compo-
nents unless (14) is used. The adaptation procedure involves updating
the filter coefficients described in (6) by using updated parameters.

E. Estimating Tracked Steering Vectors

We estimate a new reverberant RTF for the desired source, ĥn, at
index n, based on the estimated signal covariance from (25). We do
this using the method of Eigen-value decomposition (EVD),

Ωnĥn = λĥn, (26)

where the principal Eigen-vector, ĥn, satisfies the above equation
with the largest Eigen-value, λ. This estimated reverberant RTF, ĥn,
can be used in the MVDR formulation in (3) replacing hn.

F. Estimating Untracked-Source Noise Statistics

Under some circumstances, the DoA estimation and source tracking
stage might not track sources. In this work, we learn the parameters
of the untracked sources as noise, which could be diffuse, volumetric,
quiet or from other sources not identified by the DoA or tracking.

We propose to perform exponential smoothing on sample covariance
matrices when the maximum of all SCE values is below a given
threshold. The untracked-source noise covariance is given by,

Φ̂u(t, f) = α · x · xH + (1− α) · Φ̂u(t− 1, f), t > 0 (27)

where the forgetting (smoothing) factor is,

α =

{
αforget, if max (ĉ) < βthr

0, otherwise
, (28)

αforget is the conditional forgetting factor and βthr is the threshold
for classifying untracked-sources. Φ̂u is initialized at t = 0 equivalent
to (5). We then use the updated covariances, Φ̂u, in (6) to find new
filters that correspond to updated SCEs.
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Fig. 2. The true contribution, estimated contribution and beamformer array
gain are shown from top to bottom, respectively. The three colors correspond
to three speech sources. The top plot shows a stacked bar graph. The gray
area indicates algorithm ramp-up from initialization (L = 94, 3072ms).

Fig. 3. The true signal array gain in decibels is shown for four different
beamformers to highlight their adaptation speed. All sources are continually
active for the full duration.

G. Estimating Total Undesired Source Statistics

When using MVDR or LCMV, suppressing tracked and untracked
sources requires statistical inference of their spatial relationship. We
propose combining the statistics evenly. After N frames, we iteratively
update the total undesired source covariance to be,

Φ̂n = Φn = Φ̂u +
1

N − 1

∑
n′∈{1,...,N}\{n}

Ωn′ . (29)

The estimated undesired covariance can be used in (3) to produce
the filtered output and also in (6) when re-estimating the SCEs. The
process described in section III is then repeated indefinitely.

IV. RESULTS AND DISCUSSION

In this section, we outline the simulated experimental setup and
provide details for reproducing results. The performance results in
terms of array gain (signal-to-noise ratio improvement), as defined
in [12], are discussed with respect to oracle MVDR performance
trained with known source activity.

A. Experimental Setup

Recordings of speech in rooms with various reverberation times
were simulated. The size of the rooms were 6m× 7m× 3m and the
wall absorption coefficients were adjusted using the Eyring formula
[22] so that the reverberation time to 60 dB (RT60) varied between
0.15 s to 0.9 s with a total of 6 different RT60 values. The signals
were simulated using a speed of sound in air of 343m s−1 at a
sampling frequency of 16 kHz. A circular microphone array with
6 equally spaced microphones was centered at (2, 3.5, 1.5). White
Gaussian sensor noise was added to all received signals at a level of
30 dBSPL. Three speech sources, N = 3, were positioned randomly
around the microphone array with a distance of 1m to 2m, an angular

Fig. 4. The octave-band -mean frequency-domain array gain is shown for an
RT60 of 750ms. The result is an average over 20 sets of simulations where
each includes three speech sources.

Fig. 5. The mean array gain is shown for RT60 ranging from 150ms to
900ms. 95% confidence intervals over the full bandwidth and 20 sets of
source positions are shown.

separation greater than 20◦ in azimuth and elevation within ±10◦.
The performance was analyzed from 20 random sets of positions.

The received signals were then processed using all steps of the
proposed algorithm, named here-on as ‘MVDR-RTF-SCE’, along
with a maximum directivity index beamformer, ‘Max Directivity’,
and an oracle MVDR trained on known source activity, ‘MVDR-RTF
Oracle’. Simulated RTFs were used for all methods. A weighted
over-lap add (WOLA) block-based process was used with a block
size of 1024, an overlap of 50% and a square-root hanning window
for analysis and synthesis. The lengths of the buffers were L = 94,
corresponding to approximately 3 s, and the frequency range in (14)
was 100Hz to 5 kHz. The time-based forgetting threshold was T =∞
in order to investigate adaptation behavior and the forgetting factor
was αforget = 10−2. The threshold for classifying untracked-sources
was βthr = 1.2/N . The mixture signals contained 6 s of desired-only
and 6 s of undesired-only segments of sound to begin with.

B. Adaptation Behavior

We show the behavior of the proposed algorithm in Fig. 2 for a
specific simulation (RT60 of 150ms). The top plot shows the oracle
activity as determined using a voice activity detector on the ideal clean
source signals. The middle plot shows the SCEs per time and the
bottom most plot shows the estimated array gain of the adapted filter.
When there are clean segments of speech the spatial adaptation returns
SCEs that correlate well with the true activity. The algorithm maintains
performance in the mixed source signal segments, as measured by
the array gain. The specific scenario provides a clear opportunity for
the algorithm to determine the correct parameters, thus allowing it to
achieve a close match to an ideal MVDR.

In more difficult scenarios, like the one from the results in Fig. 3,
mixed sources results in few segments where only one source is active,
thus limiting the ability for algorithms to learn correct parameters.
The proposed algorithm adaptively improves performance in the more
difficult conditions as shown by the increasing array gain. The array
gain increases as rapidly as in Fig. 2 and matches performance in
less than 2 s when L = 8. It is important to note that in Fig. 3 the
values converge on similar performances after 30 s regardless of L.
The array gain also surpasses the ‘Maximum Directivity’ beamformer
in approximately 1 s.
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C. Array Gain Performance

Array gain performance is analyzed in Fig. 4. A similar method
to the one in Fig. 2 is used and repeated for the 20 sets of random
positions. Adaptation is paused after 12 s to ensure the analysis is
reflective of the maximum performance. The array gain of the proposed
approach is slightly lower than oracle performance but significantly
above the ‘Maximum Directivity’ case. The proposed method’s peak
performance reaches 17 dB on average, 1 dB less than the 18 dB
of the ‘Oracle’ method. The proposed method’s mean performance
remains 1 dB to 2 dB less than the ‘Oracle‘ case for the wideband
speech range and consistently results in 4 dB to 9 dB greater array
gain than the ‘Maximum Directivity’ method.

Further, performance as a function of RT60, shown in Fig. 5,
shows an inverse correlation of array gain and reverberation, which
is expected as spatial diffuseness increases with reverberation. The
proposed method’s maximum performance is similar to the ‘Oracle’
MVDR for all reverberation levels as it is exposed to source
signals partly separated in time. The proposed method achieves more
than 7 dB higher array gain than the equivalent ‘Max Directivity’
beamformer (RT60 of 900ms).

V. CONCLUSIONS

In this work, a method is proposed to automatically estimate
statistical parameters for a spatial filtering process. The method
estimates the spatial energy contribution of tracked sources within
an environment and uses the contributions to bias a statistical
representation of the environment learned over time. The method
is analyzed in terms of adaptation behavior, adaptation speed and
converged performance in terms of array gain. It is shown that the
method correctly adapts given general initialization conditions and in
noisy multi-talk scenarios. The adaptation can match the performance
of an ideal spatial filter and when using a small buffer size can produce
array gain that outperforms a maximum directivity beamformer in
under two seconds. The resulting spatial filters have distortionless
constraints and the method is not limited to speech sources.
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