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Abstract—Minimum power distortionless response (MPDR)
beamformer is a popular beamformer that minimizes its out-
put power under the distortionless constraint. To improve the
performance of the MPDR beamformer, a sparse distortionless
beamformer has been proposed. It minimizes the /; norm of the
output signal under the same constraint so that the output has
sparse time-frequency representation. While the /;-norm-based
formulation is theoretically advantageous owing to its convexity,
its practical performance might not be excellent because of
the bias of the /; norm. To reduce the bias and improve the
performance, we propose a sparse distortionless beamformer
based on a nonconvex sparsity-inducing objective function. The
proposed beamformer is performed via a heuristic application of
a primal-dual splitting algorithm. The experiments showed that
the proposed beamformer can achieve higher performance and
is more robust against mismatch of the target direction.

Index Terms—Microphone array, speech enhancement, sparse
time-frequency representation, proximal algorithm.

I. INTRODUCTION

Beamformers are powerful tools for speech enhancement
when a sufficient number of microphones are available. The
minimum power distortionless response (MPDR) beamformer
[1], [2] is one of the beamformers that has been widely
studied [3]-[9]. It minimizes the power of output signals
under the constraint that allows no distortion for the target
signal. Since the distortionless constraint maintains the target
signal, minimization of the output power only eliminates the
interference signals in the ideal situation. However, MPDR
beamformers may not perform well in practice because of the
mismatch of the distortionless constraint.

To improve the practical performance of MPDR beamform-
ers, a sparse distortionless beamformer has been proposed
[10]. It minimizes the ¢; norm under the same distortionless
constraint. Since minimization of the £; norm induces sparsity,
the sparse beamformer can enhance the target signal that is
approximately sparse in the time-frequency domain such as a
speech signal. That is, sparsity serves as a prior knowledge
of speech signals, and therefore the sparse distortionless
beamformer can achieve higher performance even when the
distortionless constraint contains error.

However, the ¢; norm is not ideal for promoting sparsity
due to its bias. The ¢;-norm minimization attenuates not only
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small components but also larger components. This effect tries
to suppress the target signal, which results in mixing of the
target and interference signals. By reducing the bias of /;-
norm minimization, it should be able to further improve the
performance of the sparse distortionless beamformer.

In this paper, we propose a sparse distortionless beamformer
based on a nonconvex sparsity-inducing objective function.
The proposed method reduces the bias by using a nonconvex
function [11], [12] in place of the ¢; norm. A primal-dual
splitting algorithm [13] is heuristically applied to the resultant
optimization problem for obtaining the enhanced signal. The
experiments were performed using three types of relative
transfer functions (RTFs) [14], [15] for the distortionless
constraint. The experimental results showed that the proposed
method outperformed the conventional beamformers. It was
also shown that the proposed method is robust against the
mismatch of the constraint.

II. PRELIMINARIES

A. Problem Formulation

Let ;(f) = [X1(f, 1), Xo(f, 1), -, Xar(f,1)] be an M-
dimensional vector of signals observed by M microphones,
where f and t are indices of frequency bin and time frame,
respectively, X,,,(f,t) represents the mth signal in the time-
frequency domain, and -7 denotes the transpose of a vector or
matrix. Its observation model is given by

@y (f) = h(f)S(f,t) + ni(f), (D

where h(f) = [Hi(f),H2(f), -, Hu(f)]" is an M-
dimensional vector of the transfer functions, H,,(f) is the
transfer function from the target signal to the mth microphone,
S(f,t) is the time-frequency representation of the target

Signal: and nt(f) = [Nl(f7 t)a NQ(f7 t)7 e aNM(fv t)]T rep-
resents noise.
The output signal of a beamformer Z(f,t) is given by

Z(f,t) = w()Mz(f), (2)

where w(f) = [Wi(f), Wa(f), -+, War(f)]" is a vector of
beamformer coefficients, and -7 is the Hermitian transpose.
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The beamformer coefficients w(f) are designed by minimiz-
ing some criteria related the output signal w(f)"x;(f). Here-
after, the frequency index f is dropped from the beamformer
output as wHa; for simpler notation.

B. MPDR Beamformer

The MPDR beamformer is obtained by minimizing the
output energy under the distortionless constraint. Let the RTF
be a(f) = [ai(f),a2(f), - ,an(f)]". Then, the coefficients
of the MPDR beamformer is given as a solution to the
following minimization problem:

H

min |Jwlz|? st w'la=1, 3)
w
where || - |2 is the £2 norm. Its closed-form solution is
w=(®;'a)/(a"®, " a), “

where ®, = E[z;x!!] is the M x M spatial correlation matrix,
and E|-] represents the expectation.

C. {1-norm-based Sparse Distortionless Beamformer [10]

By assuming that the target signal is sparse in the time-
frequency domain, the sparse distortionless beamformer is
obtained by solving the following minimization problem [10]:

min |wle | st w!
w

a=1, )
where ||-||1 is the ¢, norm. This problem is a modified version
of the MPDR beamformer given by Eq. (3). Since the /;
norm induces sparsity, the sparse distortionless beamformer
aims to make the output signal more sparse than the MPDR
beamformer while maintining the distortionless condition of
the target signal. To solve the optimization problem in Eq. (5),
any appropriate convex optimization algorithm can be used.

III. PROPOSED METHOD

The proposed method is given by an improved formulation
and application of the primal-dual splitting algorithm. For
convenience of explanation, we first explain the primal-dual
splitting algorithm and then explain the proposed method.
A. Primal-dual Splitting Algorithm [13]

The primal-dual splitting algorithm given in Algorithm 1
solves the following convex optimization problem:

min g(w) + h(Lw), ©)

where g(-) and h(-) are proper lower-semicontinuous convex
functions, and L is a bounded linear operator. The proximity
operator in the 2nd and 4th lines is defined as

. 1 2
proxw(z) = arg min g(x) + ﬂ |z — || . 7

In Algorithm 1, the step sizes pi;, 42 > 0 are chosen so that
MLU/ZHLH?)p S 1) (8)

where || - [|2, is the operator norm. The relaxation parameter
« can be arbitrarily set as 0 < a < 2.

Algorithm 1 Primal-dual Splitting Algorithm [13]

Input: L, w! y 11, s,

Output: w!/*1
1: for j=1,2,---,J do
2 w = pI‘OXMlg('UJ[j] - H1M2LHy[J])
3 z=yll + L2w — wll)

4 Y=z —prox_1,(z)

s witl = aw 4 (1 — a)wl]

6  ybtl=ag+ (1 -a)yll

7: end for

By applying Algorithm 1 to Eq. (3) or (5), one can obtain
an MPDR or sparse distortionless beamformer based on the
primal-dual splitting algorithm. To do so, the minimization
problems are adapted to Eq. (6). The distortionless constraint
is handled by the following indicator function:

(afw =1)

0
sy ={ e ©

where the complex conjugate is taken for both side of the
constraint for convenience. The complex conjugate of the
output signal is written as Lw by the following matrix:

L= [331,$27 e >mT]H' (10)

By setting h(-) = || - ||2 or A(-) = || - ||z, the primal-
dual splitting algorithm for solving Eq. (3) or (5) is given by
inserting the following proximity operators into Algorithm 1:

1—aw
prox,,,(w) = w + Wa, (11)
2
1
proxy . 3(2) = 7 % (12)
(brox, (), = max(0, 1= )5 ()

where max(-, ) returns the larger value of the input scalars.

B. Bias of Soft-thresholding Operator

The proximity operator of the /; norm given in Eq. (13) is
called soft-thresholding operator [16]. Since it attenuates both
small and large components, soft-thresholding cannot remain
the important components intact. This effect can be seen in
Fig. 1. The soft-thresholding operator changes every input
value to the smaller one. Therefore, the conventional sparse
distortionless beamformer tries to attenuate the target signal,
which results in mixing of the signals. One solution to this
problem is to consider an objective function whose proximity
operator does not attenuate large values. An extreme example
of such a function is the so-called £y norm whose proximity
operator is the hard-thresholding operator and is also shown in
Fig. 1. Although ¢y norm has no bias, minimizing it is difficult
owing to its discontinuous nature. To alleviate both problems,
a sparsity-inducing function that is continuous and has less
bias should be used instead of the /1 norm.
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Soft-thresholding operator

— Hard-thresholding operator

p-shrinkage (p = —1)
......... Zi
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Fig. 1. Soft-thresholding operator (yellow dot-dashed), hard-thresholding
operator (blue solid), and p-shrinkage operator (p = —1) (green dashed).

C. Proposed Nonconvex Sparse Distortionless Beamformer

The proposed method uses a continuous sparsity-inducing
function 1), whose bias is less than the ¢; norm. That is, the
proposed beamformer is given via the following problem:

min ¥, (whz,) st w
w

a=1, (14)
where 1, is a real-valued function with a parameter p. By
heuristically applying the primal-dual algorithm to this prob-
lem, an algorithm for the proposed method can be obtained
by inserting Eq. (11) and the proximity operator of 1, into
Algorithm 1.

For the sparsity-inducing function 1), this paper uses the
nonconvex function given in [11], [12]. It is implicitly defined
through its proximity operator called p-shrinkage:

po\2P
(proxuwp(z))i = max(O, 1-— (m) ) Zi, (15)

7
where p controls the degree of approximation of the ¢y norm,
ie., p = 1 corresponds to the soft-thresholding operator
in Eq. (13) whereas p — —oo gives the hard-thresholding
operator. An example of the p-shrinkage operator (p = —1) is
also given in Fig. 1. It can be seen that the two shortcomings,
the bias and discontinuous nature, can be balanced by using
the p-shrinkage operator.

IV. EXPERIMENTS

In this section, four types of experiments were performed:

o Qualitative assessment of the effect of p: Spectrograms
of the output signals obtained by the proposed method with
p € {—10,—1,0,1} were qualitatively compared.

o Comparison of the performance at each iteration: The
performance for each iteration was evaluated with four
conditions of the reverberation time RTgg.

o Comparison with error in the constraint: The perfor-
mance was compared by varying the target direction to
evaluate the robustness against the error in the constraint.

o Comparison using different types of constraint: The
performance was compared by using three types of RTFs
for the distortionless constraint.

TABLE I
COMPARISON METHODS

Method | Objective function | Eq. | prox,
Proposed (p = —1) | miny, ¥p(w™a:) | (14) | (15)
PDS sparse (£1) ming ||w™a:||: ) | a3
PDS MPDR ((3) ming wzl | 3) | (12)
Conventional MPDR | min,, |w" |3 4) —

.y Interference talker 1. Target talker

-45° | +45° /’.'

e
Y

.
N 9
N

Fig. 2. Arrangement of microphone array, target talker, and interference talker.

A. Experimental Conditions

The simulations were performed by using the audio signal
processing software Pyroomactoustics [17]. The size of
the room was set to 2.8 x 4.2 x 2.5 m?, and a 6-microphone
uniform circular array of radius 0.1 m was placed at the
center of the room. The target and interference talkers were
placed 1.0 m away from the center of the microphone array,
as shown in Fig. 2. The target and interference signals were
male/female speech signals contained in the JNAS corpus [18]
with no sensor noise. For STFT, the window size was set to
512 samples, and frame shift was set to 64 samples, with the
Hamming window. The sampling frequency was 16,000 Hz.
For evaluation, the signal-to-distortion ratio (SDR) and PESQ
were used.

To compare the difference due to formulations, the primal-
dual splitting algorithm was applied to all minimization prob-
lems in Egs. (3), (5), and (14). The methods are summarized
in Table I, where PDS stands for primal-dual splitting.

B. Effect of the Parameter p

To assess the effect of bias, qualitative comparison of the
output signals was performed by varying the parameter p
of the p-shrinkage operator in Eq. (15). Since p = 1 and
p — —oo correspond to the soft- and hard-thresholding
operators, respectively, decreasing p from 1 reduces the bias
of the proposed method compared to the ¢;-norm-based sparse
distortionless beamformer in Eq. (5). Here, p was set to
1,0,—1, and —10. The reverberation time was 100 ms, and
the number of iterations .J of Algorithm 1 was set to 2000.

Figure 3 shows the spectrograms of (a) the observed signal,
(b) the target signal observed by the reference microphone,
(c)—(f) and the output signals of the proposed beamformer
for each p. The area dominated by the interference signal is
indicated by the white dotted lines (see Fig. 3 (a) and (b)).

Since a smaller value of p leads to a smaller bias, p = —1
in (e) removed the interference signal better than p = 1 and
p = 0 in (c¢) and (d), respectively. However, p = —10 in
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Fig. 3. Spectrograms of (a) observed signal, (b) target signal at reference
microphone, and output signals of proposed beamformer whose parameter
was setto (c) p=1,(d) p=0, (e) p= —1, and (f) p = —10.

(f) obtained a result worse than p = —1 in (e). Since the
smallness of p corresponds to the degree of approximation of
the ¢y norm, smaller p increases the risk of getting stuck into a
local minimum. According to this observation, we set p = —1
for the proposed method in the rest of the experiments.

C. Performance for Each Iteration

Figures 4 and 5 show SDR and PESQ, respectively, for each
iteration. The reverberation times RTgg were set to 0, 100, 200,
and 300 ms. As in the figures, while it requires more iterations,
the proposed method (p = —1) performed better than the other
methods for all situations. However, the number of iterations
to reach the peak has increased, indicating that there is a
tradeoff between the performance and number of iterations.
Interestingly, even though the conventional MPDR and PDS
MPDR (¢3) solve the same optimization problem in Eq. (3),
PDS MPDR tended to result in the better performance. This
should be because the conventional MPDR has instability due
to the inversion of the spatial correlation matrix as in Eq. (4).

D. Robustness Against Error on Target Direction

To evaluate the sensitivity to the error on target direction, the
direction of the RTF was varied £=10° from the true direction.
Reverberation time RTgy was set to 100 ms, and the number of

Proposed (p = —1) ==+ PDS sparse ((1) PDS MPDR ({3) ===+ Conventional MPDR

(a) Oms (b) 100ms

30

0 0
0 1000 2000 3000 0 1000 2000 3000
Iteration Iteration
c) 200ms d) 300ms
s (©) s (d
EIO
5
-9
A S
@
0 0
0 1000 2000 3000 0 1000 2000 3000

Iteration Iteration

Fig. 4. SDR for each iteration. The reverberation time RTgo was set to
(a) 0 ms, (b) 100 ms, (¢) 200 ms, and (d) 300 ms.

Proposed (p = —1) ==+ PDSsparse ({;) PDS MPDR (£2) == ++ Conventional MPDR

(2) Oms (b) 100ms

0 1000 2000 3000 () 1000 2000 3000
Iteration Iteration

() 200ms (d) 300ms

0 1000 2000 3000 0 1000 2000 3000
Iteration Iteration

Fig. 5. PESQ for each iteration. The reverberation time RTgo was set to
(a) 0 ms, (b) 100 ms, (c) 200 ms, and (d) 300 ms.

Proposed (p = —1) —— PDS sparse (() PDS MPDR (£3) et Conventional MPDR
2.5
20
o TN
= T Sl 220
3 T~ 3]
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Fig. 6. SDR (left) and PESQ (right) for each angle of target direction.

iterations J of Algorithm 1 was 2000. Figure 6 shows SDR and
PESQ for each direction of the RTF. The direction of the target
signal is denoted 0°, where the interference signal is —90°
in this scale. For all situations, the proposed method (p =
—1) performed better than the other methods. Note that the
proposed method with —10° error obtained better SDR than
the ¢;-norm-based sparse distortionless beamformer with the
true RTF. This result indicates the robustness of the proposed

284



TABLE 11
SDR AVERAGED OVER 15 RESULTS

| Point source Ideal RTFs CS

Proposed (p = —1) 13.76 16.84 14.76

PDS sparse (1) 8.67 15.25 14.77

PDS MPDR (¢3) 3.76 10.77 11.71

Conventional MPDR 2.27 8.51 10.83
TABLE 1II

PESQ AVERAGED OVER 15 RESULTS

| Point source Ideal RTFs  CS

Proposed (p = —1) 1.56 2.40 1.77
PDS sparse (¢1) 1.29 2.25 1.76
PDS MPDR (43) 1.15 1.62 1.55
Conventional MPDR 1.15 1.52 1.54

method against the error of the distortionless constraint.

E. Performance for Different Constraint using RTFs [14]

For the distortionless constraint, the above experiments used
the RTF calculated based on the point source model. Since the
presence of reverberation changes the transfer function, the
point source RTF has model mismatch unless the reverberation
time is zero. To alleviate the model mismatch contained in the
distortionless constraint, we consider two RTFs in addition to
the point source model RTF.

In this experiment, the ideal RTF ajgeq and an RTF esti-
mated by using the covariance-subtraction (CS) method acs
were considered [15]. Based on the observation model in
Eq. (1), the ideal RTF is given by the following normalization:

aiea = h/(efh), (16)
where e; = [1,0,---,0]T is the unit vector selecting the
reference microphone. The CS-based RTF is given by

acs = (Pgze1)/(e] Bger), (17)

where ® 4 is the spatial correlation matrix of the target signal
estimated by subtracting that of the interference signal ®,, =
E[nynfl], which was calculated ideally, as @5 = ®, — ®,,.

Here, the directions of the target and interference signals
were given by 3 situations: (+15°,—15°), (+30°,—30°),
and (4+45°,—45°). For each situation, 5 combinations of
signals were used, which resulted in 15 types of observations.
Reverberation time RTg; was 100 ms, and the number of
iterations J of Algorithm 1 was set to 5000.

The results are summarized in Tables II and IIl. Except
CS in Table II, the proposed method (p = —1) performed
better than the other methods. When the better RTFs (@jgeq and
acs) are given for the distortionless constraint, the proposed
method and the ¢;-norm-based method performed similarly. In
contrast, the proposed method outperformed the other methods
when the given RTF was not accurate. The proposed method
performed robustly regardless of the quality of the given RTF,
which should be advantageous in a practical situation because
estimating a high-quality RTF is not an easy task.

V. CONCLUSION

In this paper, the sparse distortionless beamformer was pro-
posed by improving the existing ¢;-norm-based beamformer.
The proposed method is based on the nonconvex sparse-
inducing function whose proximity operator is given by the
p-shrinkage operator. It is iteratively applied in the primal-
dual splitting algorithm utilized to minimize the objective
function. The simulation experiments confirmed that the pro-
posed method performed better than the comparison methods
even when the given target direction was erroneous. Since
the proposed method required a lot of iterations when the
reverberation time was long, investigation of a faster algorithm
should be considered in the future works.
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