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Abstract—In underwater acoustics, shallow water environ-
ments act as modal dispersive waveguides when considering
lowfrequency sources. In this context, propagating signals can
be described as a sum of few modal components, each of them
propagating according to its own wavenumber. Estimating these
wavenumbers is of key interest to understand the propagating
environment as well as the emitting source. To solve this problem,
we proposed recently a Bayesian approach exploiting a sparsity-
inforcing prior. When dealing with broadband sources, this model
can be further improved by integrating the particular dependence
linking the wavenumbers from one frequency to the other. In this
contribution, we propose to resort to a new approach relying on a
restricted Boltzmann machine, exploited as a generic structured
sparsity-inforcing model. This model, derived from deep Bayesian
networks, can indeed be efficiently learned on physically realistic
simulated data using well-known and proven algorithms.

Index Terms—Underwater modal estimation, structured sparse
approximation, Restricted Boltzmann Machine, Bayesian algo-
rithm.

I. INTRODUCTION

In underwater acoustics, shallow environments behave
like dispersive waveguides when considering low-frequency
sources. An acoustic field received on an antenna is then
classically described by a small set of modes propagating
longitudinally according to their horizonal wavenumbers. The
knowledge of these modes is of great importance for the
characterization of the observation environment and, con-
sequently, for the source localization. Among the different
methods used to discriminate these modal components, the
frequency-wavenumber (f-k) representation (see Fig. 1) allows
a direct observation of the dispersion (i.e., the frequency
dependence) of the wavenumbers. Inherently conceivable for
a horizontal array of sensors aligned with the source, they are
particularly used in geophysics [1]. Recent contributions have
focused on the construction of (f-k) diagrams by exploiting
less constrained acquisition schemes, allowing their use in
underwater acoustics.

Since propagation is described by a small number of modes,
the use of sparsity-inforcing models seems appropriate. In
fact, some contributions (see e.g., [2], [3]) have proposed the
use of the “compressed sensing” paradigm to estimate modal
dispersion. However, if these methods prove to be relevant,
we argue that they can be further improved by precisely
integrating the dispersion relation linking the wavenumbers
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Fig. 1. Illustration of a (f-k) diagram obtained with a Pekeris waveguide.

from one frequency to another into the estimation process
of the (f-k) diagram. To this end, we propose to build on
some recent contributions in compressed sensing and machine
learning.

On the one hand, research on compressed sensing [4]–[6]
and more generally sparse decompositions have underlined the
interest of taking into account the structures naturally living
in signal representations [7]. On the other hand, restricted
Boltzmann machines (RBM) [8] are at the heart of many
recent contributions in machine learning that emphasize two
precious qualities: i) they have been identified as generic
models approximating any distribution over {0, 1}n [9]; ii)
efficient algorithms have been developed to train them making
them powerful representational models when large data sets
are available [10]–[12].

These parallel researches in finally not so distant fields have
recently led to the idea of exploiting RBMs learned from large
databases to model the structures of sparse representations
[13]–[15]. This paper follows on from these contributions.
More particularly, we propose to deal with the (f-k) diagram
estimation using a new Bayesian algorithm. Our approach con-
siders a RBM as a model for structured sparse representations
and exploits it through a mean-field approximation.
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II. ACOUSTIC PROPAGATION IN SHALLOW WATER
ENVIRONMENTS

In shallow water, acoustic propagation is described by
modal theory. According to the latter, when considering a
source at depth zs and frequency f , the signal received by
an hydrophone placed at depth z and distance r of the source
can be formulated as

y(f, r, z, zs) =

K(f)∑
m=1

Am(f, z, zs)e
−irkrm(f) + n(f, r, z), (1)

where K(f) stands for the number of modal components
propagating at frequency f , Am(f, z, zs) is the modal am-
plitude associated to the m-th component, krm(f) is the m-th
wavenumber at frequency f and n(f, r, z) stands for some
additive measurement noise.

For a M sensor linear antenna, Eq. (1) can be written as

yf = Fzf + nf (2)

where F is a (M×N)-dictionary of Fourier discrete atoms, zf
contains a few non-zero coefficients indicating the wavenum-
bers propagating at frequency f and quantifying their ampli-
tudes and nf stands for the additive noise.

A common approach to estimate zf from yf is to use
a simple (inverse) spatial Fourier transform. Although very
popular, the method requires sensors that are finely spaced
sufficiently to avoid aliasing. As an alternative, more recent
contributions [2], [16], [17] have proposed to leverage the
sparsity of zf to design more robust methods.

When dealing with broadband sources, the generative model
can be written as follows :

[yf1 , . . . ,yfP ] = F · [zf1 , . . . , zfP ] + [nf1 , . . . ,nfP ] , (3)

where P is the number of (discretized) frequencies of the
source. The estimation of the zf ’s can then be performed
frequency per frequency with the same tools as for the mono-
frequency case. Stacking these estimates zf one on top of the
other leads to the (f-k) diagram (see Fig. 1) and makes appear
some structures linking the wavenumbers propagating from
one frequency to the other. These structures are well-known
in practice under the physical name of dispersion relation.
While some contributions in the literature work on an explicit
combination of this relation with sparse approaches [2], [17],
we propose here to resort to a Bayesian formulation of the
(f-k) diagram estimation problem using a particular choice of
prior holding the structure information.

To that end, a vectorized version of Eq. (3) is built by
defining y = [yT

f1
, . . . ,yT

fP
]T , z = [zTf1 , . . . , z

T
fP

]T , n =

[nT
f1
, . . . ,nT

fP
]T and D as a block-diagonal matrix with F

P -times repeated on its diagonal. Adopting this formulation,
Eq. 3 can be re-formulated as

y = Dz + n, (4)

where y (resp. z) is of dimension MP (resp. NP ) and D is a
(MP ×NP )-dictionary.

The inverse problem we are interested in is then formulated
as the estimation of the (f-k) diagram z from the acoustic
signal y measured over the M -sensor antenna at all of the P
frequencies.

III. PROBLEM FORMULATION

According to the modal theory, in shallow water environ-
ments and at low frequencies, the vector z has few non-zero
elements, corresponding to the propagating modal wavenum-
bers, that is z is assumed to be sparse. Modeling such a
property in a Bayesian framework can be realized in different
ways. A popular model considers z as the result of the
Hadamard product of a centered circular Gaussian variable1,
say x ∈ CNP with variance σ2

x and a binary variable, say
s ∈ {0, 1}NP . This model explicitly expresses the support s
of the sparse vector z , which is a key component of sparse
estimation2: we look for a good estimation of s knowing the
observations y.

When no structure is assumed in sparse representations, the
Bernoulli law constitutes a natural choice for s. Structures,
for their part, can be modeled according to various distribu-
tions. In [7], [18]–[20], Boltzmann machines are envisaged
as generic models encompassing many well-known models.
These models depend on parameters which are difficult to
train, due - among others - to the presence of a quadratic
term. Instead, more recent works [13]–[15] propose to exploit
restricted Boltzmann machines, for which efficient training
algorithms exist.

Formally, for s ∈ {0, 1}NP , RBM can be expressed as

p(s) =
∑
h

p(s,h) ∝ exp(aTh + bT s + sTWh), (5)

where h is a L−dimensional binary hidden variable and a, b
and W are the RBM parameters.

In [14], the authors propose to implement this model into
a OMP-like framework, while in [15], a reweighted `1-like
procedure is considered. Both procedures are deterministic,
integrating RBM as an additional extra block and making
hard decision on it. In [13], a Bayesian approach based
on an approximate message passing procedure is proposed,
leading to a more integrated vision of the restricted Boltzmann
machine. However, RBM is not fully exploited in the sense
that the support s is still assumed to follow a Bernoulli law,
although informed by the RBM. In this paper, we propose a
new Bayesian approach, leveraging both i) the probabilistic
nature of the RBM, and ii) the explicit modeling of s as the
commonly visible layer of a RBM (see Eq. (5)).

More particularly, considering model (4)-(5), we are in-
terested in the following marginalized maximum a posteriori
estimation problem :

(x̂, ŝ) = argmax
x,s

log p(x, s|y) (6)

1For a sake of simplicity, we will use the same notation for a random
variable and its realizations.

2We note indeed that once the support is estimated, the corresponding
coefficients emerge straightforwardly by least-squares estimation.
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with p(x, s|y) =
∫
p(x, s,h|y). In the continuation of [7], we

propose to resort to a mean-field approximation.

IV. DEEP STRUCTURED SOFT BAYESIAN PURSUIT

Mean-field (MF) approximations aim at approximating a
posterior distribution, here p(x, s|y), by a “simpler” distribu-
tion, say q(x, s), having a easy-to-handle factorization. We
consider in this paper the factorization

q(x, s,h) =

NP∏
i=1

q(xi, si)

L∏
j=1

q(hj), (7)

with xi (resp. si) the i-th element in x (resp. s) and hj
the j-th element in h. The approximation q(x, s,h) is cho-
sen to be as close as possible to p(x, s,h|y) in the sense
of the Kullback-Leibler (KL) divergence. In practice, this
latter optimization problem can be efficiently solved by an
iterative algorithm, called “variational Bayesian expectation
maximization” (VBEM) algorithm, insuring a decreasing of
the KL divergence at each iteration. We expose here below its
particularization to model (4)-(5).

The VBEM procedure successively updates all factors in the
MF approximation, namely here the q(xi, si)’s and q(hj)’s,
according to the following iterative rules:

q(k+1)(xi, si) ∝ exp

(
〈log p(x, s,h,y)〉 ∏

j q(k)(hj)∏
j>i q(k)(xj, sj)∏
j<i q(k+1)(xj, sj)

)

q(k+1)(hi) ∝ exp

(
〈log p(x, s,h,y)〉 ∏

j>i q(k)(hj)∏
j<i q(k+1)(hj)∏
j q(k+1)(xj, sj)

)

where 〈f(u)〉q(uj) ,
∫
uj
q(uj)f(u) duj and k is the current

iteration number. Developing these update rules according to
model (4)-(5) gives q(k+1)(xi, si)=q(k+1)(xi|si)q(k+1)(si)

with q(k+1)(xi|si) = CN (m(k+1)
x (si),Σ

(k+1)
x (si)) (8)

m(k+1)
x (si) = si

σ2
x

σ2
n + σ2

xsid
H
i di

dH
i 〈ri〉(k+1) (9)

Σ(k+1)
x (si) =

σ2
nσ

2
x

σ2
n + σ2

xsid
H
i di

(10)

〈ri〉(k+1)=y−
∑
j 6=i

q(n)(sj=1) m(n)
x (sj=1)dj (11)

with n=k + 1 if j<i and n=k if j>i

where CN (µ,Γ) stands for the circular Gaussian distribution
with mean µ and variance Γ and

q(k+1)(si) ∝ exp

(
si

(
bi +

∑
l

wilq
(k)(hl = 1)

))
√

Σ
(k+1)
x (si) exp

(
1

2

|m(k+1)
x (si)|2

Σ
(k+1)
x (si)

)
(12)

q(k+1)(hl) ∝ exp

(
hl

(
al +

∑
i

wilq
(k+1)(si = 1)

))
(13)

where we have all along denoted by di the i-th column in D
and wil the (i, l)-th element in W.

To help the convergence of the algorithm, an estimation
of the noise variance σ2

n is implemented in the same way as
the one proposed in SoBaP [7], leading to a dependence of
Σ

(k+1)
x (si) in the iteration number (k + 1) (see Eq. (10)).

As stopping criterion, the KL divergence is computed at each
iteration, between the target distribution p(x, s,h|y) and its
current MF approximate q(x, s,h): the algorithm stops when
this divergence no longer decreases “sufficiently”. Pseudo-
code 1 gives a practical implementation of the above equa-
tions. The use of RBMs being a natural bridge towards deep
networks, we will refer to the proposed procedure as the “Deep
Structured Soft Bayesian Pursuit” (DSSoBaP).

Pseudo-code 1 DSSoBaP algorithm
Input: y,D,W,a,b, σ2

x, σ
2
n

Initialisation: {q(0)(si),m(0)
x (si)}si∈{0,1},i∈{1,...,NP},

{q(0)(hl)}l∈{1,...,L}, k = 0, KL = 0, KLold =∞
1: while KLold − KL > 10−1 do
2: Optional: update σ2

n according to [7]
3: for i = 1 . . . NP do
4: update 〈ri〉(k+1) using (11)
5: Optional: if step 2, update Σ

(k+1)
x (si) using (10)

6: update m(k+1)
x (si) using (9) for si ∈ {0, 1}

7: update q(k+1)(si) using (12) for si ∈ {0, 1}
8: end for
9: for l = 1 . . . L do

10: update q(k+1)(hl) using (13) for hl ∈ {0, 1}
11: end for
12: k ← k + 1
13: KLold ← KL
14: compute current KL divergence
15: if KLold − KL ≤ 10−1 then, kmax = k
16: end if
17: end while

Output: {q(kmax)(si = 1),m
(kmax)
x (si = 1)}i∈{1,...,NP}

Note that DSSoBaP has an algorithmic complexity in the
order of O(NP (MP + L)) per iteration. This complexity is
reasonable compared to other procedures in the literature, such
as e.g.. RBM-OMP [14]. This drawback in particular prevented
us from using RBM-OMP in our particular problem.

V. EXPERIMENT

In this section, we confront our approach to synthetic ex-
periments and compare its performance to the SoBaP standard
procedure.

A. Data simulation and training phase

Several models of the ocean have been proposed in the
literature of modal theory [21]. One of the most popular
is the Pekeris waveguide. In this model, the sea surface is
assumed to be perfectly reflective, and the sea bottom is
considered as a semi-infinite fluid. Its parameters therefore

288



0 3 · 10−2 6 · 10−2 9 · 10−2 0.12
0

5

10

15

20

25

Wavenumber (radm−1)

F
re
q
.
(H

z)

0.5

1

1.5

2

·10−2

0 3 · 10−2 6 · 10−2 9 · 10−2 0.12
0

5

10

15

20

25

Wavenumber (radm−1)

F
re
q
.
(H

z)

0

2

4

6

8

·10−2

0 3 · 10−2 6 · 10−2 9 · 10−2 0.12
0

5

10

15

20

25

Wavenumber (radm−1)

F
re
q
.
(H

z)

0

5·10−2

0.1

0.15

Fig. 2. (f-k) diagrams obtained for M/N = 0.1 and SNR= 3 dB by (left) inverse Fourier transform; (middle) SoBaP; (right) DSSoBaP.

include water layer thickness D (constant over the source-
receiver distance), water density ρw and celerity cw, ground
density ρg and celerity cg . Considering this simple model, we
propose to simulate the propagation of an acoustic signal in
various Pekeris environments and to learn the structures in
the corresponding (f-k) diagrams. The considered setup is as
follows.

Source and antenna are assumed to lie on the ground at
same depth zs = z =D varying from 100 m to 200 m. We
simulate the water celerity cw from 1450 m s−1 to 1550 m s−1,
and the water density ρw from 950 kg m−3 to 1050 kg m−3.
The studied frequencies range from 0 Hz to 30 Hz with a step-
size of 0.5 Hz, i.e., P = 60 frequencies are considered, and
we set the ground properties cg and ρg from the sediments
geoacoustic parameters synthesis in [22]. The simulated an-
tenna is composed of M = 120 sensors regularly spaced from
50 m.

With such parameters, we generated a set of 3575 signals
– of size 120 × 60, i.e., 120 sensors, 60 frequencies–and
their theoretical sparse decomposition (f-k) diagrams – of size
120 × 60, i.e., N = 120 potential wavenumbers for each 60
frequencies – whose sparsity ratios fluctuate between 3.10−3

and 3.10−2. We then randomly divided these simulations into
a training set (3000 samples) and a testing set (575 samples)
and binarized the (f-k) diagrams from the training set so as to
obtain their theoretical supports.

These supports were used to train a RBM with L = 30
hidden units. Training parameters were fixed to 10−2 for the
learning rate, 50 for the minibatch size, 2000 for the number
of epochs and the Persistent Contrastive Divergence algorithm
[10] was employed with an l1 regularization so as to inforce
the sparsity of the learned features. The obtained RBM is then
integrated as prior into DSSoBaP.

B. Tests and results analysis

To assess the relevance of RBM into the considered inverse
problem, we compare the performance of DSSoBaP with that
of SoBaP, introduced in [7]. This algorithm is based on the
same MF approximation as DSSoBaP but instead of the RBM
prior (see Eq. (5)), SoBaP exploits a i.i.d. Bernoulli model on
the SR support. It has to be noticed that we do not compare

the approach with those proposed in [7], [14], mainly because
of their computational cost.

Two figures of merit are considered: i) the estimation of the
modal amplitudes (i.e., the non-zero coefficients in the zf ’s)
is evaluated according to the normalized mean square error
(NMSE), ii) the detection of the wavenumbers (i.e., the support
of the sparse zf ’s) is evaluated according to the True Positives
Rate (TPR) which is the proportion of the theoretical support
that has been correctly recovered and the False Discovery Rate
(FDR) which is the proportion of the estimated support that
should not have been activated (i.e., the proportion of false
detection within the estimated support). Each metric is valued
according to the signal-to-noise ratio (SNR) on the one hand,
and the number of sensors on the other hand. For the tests
related to the SNR, we fix the number of observations to 1440
by randomly selecting 24 sensors and let the SNR range from
0 dB to 5 dB by adding Gaussian noise nf with modulated
variance σ2

n. For the tests related to the number of sensors –
which is classical in compressed sensing – we choose to fix
the SNR to 3 dB and let the proportion of hydrophones range
from 0.1 to 1 by randomly selecting from 12 to 120 sensors
of the antenna.

SoBaP and DSSoBaP are run using the same stopping
criterium as described in pseudo-code 1. For SoBaP, the
Bernoulli parameter is set for each test sample to its exact
value that is the theoretical proportion of nonzero coefficients
in z, while for DSSoBaP the prior is provided by the same
trained RBM for all test samples. Finally, the performance
metrics are averaged over the entire test dataset.

Fig. 3 illustrates the obtained results. One can see that
DSSoBaP performance curves follow the same tendencies as
SoBaP while being better in most cases, especially in the worst
configurations, i.e., with low SNR and low M/N ratio. In
particular, the gap between DSSoBaP and SoBaP TPR curves
shows that the RBM-based prior has been more effective than
the Bernoulli prior for recovering the theoretical support, while
the similar FDR curves show that it also conserves the same
sparsity properties of the Bernoulli prior by producing only
slightly more false detections. Interestingly, we can observe
that the improvement of the detection performance leads to an
improvement of the NMSE metric, that is the amplitudes of
the modes are consequently better recovered with DSSobaP
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Fig. 3. NMSE (top) and TPR/FDR (bottom) w.r.t. the SNR (left) and the
sensor ratio M/N (right).

than with SoBaP.
An example of recovered (f-k) diagrams by inverse Fourier

transform, SoBaP and DSSoBaP is shown on Fig. 2. The
considered test parameters are SNR=3 dB and sensor ratio
M/N = 0.1. One can see that DSSoBaP is able to detect
much elements from the ground truth support than SoBaP. In
particular, structures that are characteristic of modal propaga-
tion – the line shapes induced by wavenumber propagation
along frequencies – are better recognized using the RBM-
based prior, thus showing that RBM are, as expected, well
suited for learning spatial dependencies in the support density.

VI. CONCLUSION

In this work, we introduced a new Bayesian sparse de-
composition algorithm able to exploit an RBM – learned in
a previous step – as a structure model on the support of a
sparse representation. The proposed algorithm relies on an MF
approximation and allows a natural integration of the RBM.
Its performance on a current underwater acoustic problem is
very promising compared to its “standard” counterpart which
exploits non-structured Bernoulli variables. Moreover, as the
training phase is performed on a collection of physically-
realistic simulations, it naturally incites the prior to respect
some theoretical structures, which might be helpful when
dealing with real datasets.
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