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Abstract—This paper presents a blind source separation (BSS)
method to separate an unknown number of sound sources. A
state-of-the-art BSS method called fast multichannel nonnegative
matrix factorization (FastMNMF) represents the power spec-
tral density of sources with an NMF model and their spatial
covariance matrices (SCMs) with a jointly-diagonalizable (JD)
full-rank model. Thanks to the JD SCMs, this method can
separate more realistic reverberant and noisy mixtures compared
to the conventional rank-1 spatial models. In this paper, we
extend FastMNMF to work with an unknown number of sound
sources based on a Bayesian non-parametric framework. Because
FastMNMF can be considered as nonnegative tensor factorization
(NTF) on a diagonalized spectrogram, we utilize a gamma
process to this NTF by introducing a latent source activation
variable to encourage the shrinkage of the redundant source
classes. The proposed inference is formulated as a variational
expectation-maximization algorithm for jointly estimating the
NTF parameters and diagonalizer. We experimentally confirmed
that the proposed method robustly separated an unknown num-
ber of sources while the conventional FastMNMF required careful
parameter selection depending on the actual number of sources.

Index Terms—Blind source separation, FastMNMF, gamma
process, Bayesian signal processing

I. INTRODUCTION

Blind source separation (BSS) is a technique to separate
sound source signals from a multichannel mixture record-
ing with few prior information about sources and micro-
phones [1]–[3]. The recent BSS methods have been investi-
gated by formulating probabilistic generative models of the
observed mixture signal, and they can be categorized into
two types: mixture and factor models [4]–[9]. The mixture
model assumes that each time-frequency (TF) bin of the
observed multichannel mixture follows a multivariate Gaussian
distribution with a spatial covariance matrix (SCM) [4]–[6].
Assuming that only one source signal is dominant in each TF
bin, the SCM is switched according to the dominant source. In
the factor model, on the other hand, the TF bin is formulated
with the sum of SCMs for all the source signals [7]–[9]. Since
an audio mixture signal is represented by a sum of source
signals, the factor model is a more natural representation of
audio signals rather than the mixture model.

The advancement of the efficient SCM representation has
been offering significant performance benefits to the factor-
based BSS [2], [8]–[12]. Since the SCMs without any con-
straints have a too high degree of freedom, their estimation is
unstable and has frequency permutation ambiguity. To solve
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Fig. 1. Overview of the proposed gamma process FastMNMF

this problem, multichannel nonnegative matrix factorization
(MNMF) [9] has been proposed by assuming an NMF model
on the power spectral density (PSD) of each source. The NMF
model represents the PSD as a product of spectral basis vectors
and their activation vectors. Independent low-rank matrix anal-
ysis (ILRMA) [2], which performs fast and stable inference
of MNMF, has been proposed by assuming that the rank of
SCMs is only one (rank-1) and the number of sources is equal
to that of microphones (determined condition). To mitigate
these assumptions, FastMNMF [11], [12] has recently been
proposed by utilizing a joint diagonalization (JD) technique.
In the FastMNMF model, each of the SCMs is represented
by a weighted sum of a common set of rank-1 SCMs. As
the parameters of SCMs are efficiently reduced, FastMNMF
achieved both high performance and fast inference.

Most of the existing BSS methods require the number of
sound sources in an observed mixture as a hyperparameter.
The performance of the methods often changes inconveniently
depending on this parameter. A popular solution is to jointly
count and separate sound sources, which has mainly been
studied for the mixture models by clustering the TF bins of the
observed mixture signal [6], [13]–[16]. Preparing a sufficiently
large number of source classes, a sparse prior distribution
is assumed on the activation of each source to encourage
the shrinkage of redundant sources. Bayesian non-parametric
priors such as the Dirichlet process [13], [16] have also been
utilized for representing the arbitrary number of sources. This
approach, however, has performance limitations due to the
disjointness assumption of the mixture model. Few studies aim
at the factor models, and only one study combined a rank-1
spatial model and a Bayesian non-parametric framework based
on the Beta-process [17].

In this paper, we propose Bayesian non-parametric FastM-
NMF for separating an unknown number of sources with the
strong JD full-rank spatial model (Fig. 1). FastMNMF can
also be regarded as a joint optimization of diagonalizer (linear
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transform) estimation and nonnegative tensor factorization
(NTF) [18] for the power spectrograms of the transformed
domain. Since NTF is a multichannel extension of NMF,
we can perform source number estimation with a gamma
process [19]. This framework introduces nonnegative sparse
variables for encouraging the shrinkage of redundant source
spectrograms in a Bayesian manner. The proposed inference is
formulated as a variational expectation-maximization (VEM)
algorithm that iteratively and alternately updates the NTF
parameters and the diagonalizer.

The main contribution of this study is to combine the
state-of-the-art BSS method with Bayesian source number
estimation. The existing BSS methods with source counting
were based on the mixture models [6], [13], [15] or the
factor model with the rank-1 spatial model [17]. The proposed
method is based on FastMNMF, which is the factor model
with the JD full-rank spatial model. Thanks to this spatial
model, our method can work in more reasonable echoic and
noisy conditions than the methods based on the rank-1 spatial
model. We experimentally show that the proposed method
can robustly separate sound sources even when the number
of sound sources is not given in advance.

II. BACKGROUND

Let an M -channel mixture signal xft ∈ CM include N
source signals snft ∈ C, the relationship between xft and
snft can be formulated as follows:

xft =

N∑
n=1

anfsnft, (1)

where anf ∈ CM is a steering vector for source n, and
t = 1, . . . , T and f = 1, . . . , F represent time and frequency
indices, respectively. Since there is scale ambiguity between
anf and snft, most of BSS methods estimate the source image
xnft = anfsnft from an input observed mixture xft. A
typical BSS approach is to estimate the source image based on
a statistical model that combines a source model and a spatial
model, representing the PSD of each source signal and the
sound propagation process, respectively.

A. Source models

A popular formulation of a source model assumes that
the source signal snft follows a complex Gaussian distribu-
tion [8]–[10]:

snft ∼ NC (0, λnft) , (2)

were λnft ∈ R+ represents the PSD of source n. The NMF
model further assumes the PSD λnft to be low-rank with
spectral basis vectors wnk = [wnk1, . . . , wnkF ] ∈ RF

+ and
their activation vectors hnk = [hnk1, . . . , hnkT ] ∈ RT

+:

λnft =

K∑
k=1

wnkfhnkt, (3)

where K represents the number of the spectral bases.
The number of bases K is an important parameter of NMF

because K controls the complexity of the source spectrograms.

Using a Bayesian non-parametric framework [19], we can
automatically determine this parameter. Here, the key idea is
to prepare a sufficiently large number of bases and encourage
shrinkage of redundant bases by introducing a latent activation
variable znk ∈ R+ as follows:

λnft =

K∑
k=1

znkwnkfhnkt. (4)

This shrinkage is conducted by putting a sparse gamma prior
on znk as follows:

znk ∼ Gamma (az/K, caz) , (5)

where az ∈ R+ is a hyperparameter to control how many basis
vectors are likely to be active, and c is a scale parameter. In
this model, wnkf and hnkt are also assumed to follow gamma
distributions as conjugate priors of the Gaussian likelihood:

wnkf ∼ Gamma (aw, aw) , hnkt ∼ Gamma
(
ah, ah

)
, (6)

where aw ∈ R+ and ah ∈ R+ are hyperparameters to control
the sparseness of wnkf and hnkt, respectively. As the number
of bases K increases towards infinity, znk approximates a
sample from a gamma process where the number of znk having
large values follows a Poisson distribution [19].

B. Spatial models

From Eqs. (1) and (2), we obtain the following spatial model
with a zero-mean multivariate Gaussian distribution:

xft ∼ NC

(
0,

N∑
n=1

λnftHnf

)
, (7)

where Hnf = anfa
H
nf ∈ S+ is a rank-1 SCM for source

n at frequency f . ILRMA assumes this spatial model and
the NMF source model under the determined condition (N =
M ) to avoid the likelihood being a degenerate distribution.
The inference of ILRMA can be efficiently conducted by the
iterative projection (IP) rules [7] for anf and multiplicative
update rules for the NMF parametersz. A Bayesian ILRMA
utilizing the gamma process, introduced in Sec. II-A, is also
proposed for automatically determining the number of basis
vectors [20], [21].

The full-rank spatial model [8], which is used in MNMF [9],
assumes the SCM Hnf to be a full-rank matrix. This model
works with any number of sound sources N regardless of the
number of microphones M . In addition, the full-rank SCM
can handle fluctuation of the steering vectors (e.g., small
echoic conditions) and diffuse noise. This model, however,
takes heavy computational costs and often fails at bad local
optima due to its high degree of freedom.

To efficiently reduce the number of parameters for an SCM
while making its expression capability high enough, a JD
full-rank spatial model has been proposed [10]–[12]. The
model assumes that the SCMs for all the sources to be jointly
diagonalizable as follows:

xft ∼ NC

(
0,

N∑
n=1

λnftQ
−1
f diag(gnf )Q

−H
f

)
, (8)
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where Qf = [qf1, . . . ,qfM ]H ∈ CM×M is a diagonalizer,
and gnf ∈ RM

+ is a nonnegative vector. The diagonalizer
Qf is estimated by the fast and stable IP algorithm, and the
nonnegative vector gnf is estimated with the multiplicative up-
date rule. FastMNMF assumes this JD full-rank spatial model
with the NMF source model [11], [12]. It is also reported
that FastMNMF can improve the separation performance and
initialization sensitivity by making gfn into gn ∈ RM

+ for
sharing the parameter over all the frequencies [12]. Impor-
tantly, FastMNMF can be regarded as the joint optimization
of the diagonalization for the observed signal and the NTF on
the transformed domain Qfxft ∈ CM . Since the transformed
spectrogram follows a multivariate Gaussian distribution with
a diagonal covariance matrix, we obtain the likelihood function
for gnm and λnft as follows:

qH
fmxft ∼ NC

(
0,

N∑
n=1

gnmλnft

)
. (9)

The maximization of this zero-mean complex Gaussian like-
lihood corresponds to the minimization of the Itakura-Saito
divergence between |qH

fmxft|2 and
∑N

n=1 gnmλnft.

III. GAMMA PROCESS FASTMNMF
The proposed method combines FastMNMF that has the

powerful JD spatial model with a gamma process that can
handle an unknown number of sources in a Bayesian manner.
We first formulate the proposed generative model for a mul-
tichannel mixture recording and describe its inference based
on a VEM algorithm.

A. Model formulation
To handle the unknown number of sources with a gamma

process, we introduce a latent gain variable zn ∈ R+ to Eq. (9)
with a sufficiently large number N as follows:

qH
fmxft ∼ NC

(
0,

N∑
n=1

zngnmλnft

)
. (10)

The latent variable zn is assumed to follow a sparse gamma
distribution to construct a gamma process by taking N →∞:

zn ∼ Gamma (az/N, caz) , (11)

where az ∈ R+ is a hyperparameter that controls how many
sources are likely to be active, and c ∈ R+ is a scale parameter
that is set to 1

FTM

∑
f,t,m|xftm|2. We also put a gamma

distribution on gnm as a conjugate prior:

gnm ∼ Gamma (ag, ag) (12)

where ag ∈ R+ is the hyperparameter to control the sparseness
of gnm. As described in Sec. II-A, the number of sufficiently
active sources approximately follows a Poisson distribution.

The PSD λnft is formulated with the NMF source model
Eq. (3) with conjugate gamma priors as follows:

wnkf ∼ Gamma (aw, aw) , (13)

hnkt ∼ Gamma
(
ah, ahK

)
, (14)

where aw ∈ R+ and ah ∈ R+ are the hyperparameters to
control the sparseness of wnkf and hnkt, respectively.

B. Variational expectation-maximization inference

The goal of our VEM inference is to estimate the posterior
distribution of the model parameters Θ = {Z,G,W,H}
while the diagonalizer Q is obtained with maximum likelihood
estimation. Since the true posterior distribution p(Θ|X,Q) is
intractable, we approximately estimate the following varia-
tional posterior distribution q(Θ) by assuming the indepen-
dence of the parameters:

p(Z,G,W,H | X,Q)≈q(Θ) ≜ q(Z)q(G)q(W)q(H). (15)

This approximation is conducted by maximizing a lower
bound of the log-marginal likelihood p(X | Q) called an
evidence lower bound (ELBO) L as follows:

L = Eq[log p(X | Θ,Q)]−DKL[q(Θ) | p(Θ)], (16)

where Eq[x] is an expectation of x by the variational distribu-
tion q, and DKL[q | p] represents the Kullback-Leibler (KL)
divergence between q and p. This maximization corresponds to
the minimization of the KL divergence between the variational
and true posteriors. The proposed VEM algorithm iteratively
and alternately updates the variational posterior q(Θ) at the
E step and the diagonalizer Q at the M step. After obtaining
the parameter estimates, the source images are extracted by
the multichannel Wiener filtering [12].

1) Variational E step: By using the Jensen’s inequality and
the first-order Taylor approximation [19], the E step updates
the variational posteriors q(Z), q(W), q(H), and q(G) to
minimize DKL[q(Θ) | p(Θ | X,Q)] as follows:

q(zn)← GIG (az/N, ρzn, τ
z
n) , (17)

ρzn = caz +
∑

k,f,t,m

1

ωftm
Eq [gnmwnkfhnkt] , (18)

τzn =
∑

k,f,t,m

x̃ftmψ
2
nkftmEq

[
1

gnmwnkfhnkt

]
, (19)

q(wnkf )← GIG
(
aw, ρwnkf , τ

w
nkf

)
, (20)

ρwnkf = aw +
∑
t,m

1

ωftm
Eq [zngnmhnkt] , (21)

τwnkf =
∑
t,m

x̃ftmψ
2
nkftmEq

[
1

zngnmhnkt

]
, (22)

q(hnkt)← GIG
(
ah, ρhnkt, τ

h
nkt

)
, (23)

ρhnkt = ahK +
∑
f,m

1

ωftm
Eq [zngnmwnkf ] , (24)

τhnkt =
∑
f,m

x̃ftmψ
2
nkftmEq

[
1

zngnmwnkf

]
, (25)

q(gnm)← GIG (ag, ρgnm, τ
g
nm) , (26)

ρgnm = ag +
∑
k,f,t

1

ωftm
Eq [znwnkfhnkt] , (27)

τgnm =
∑
k,f,t

x̃ftmψ
2
nkftmEq

[
1

znwnkfhnkt

]
, (28)
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where GIG (x; γ, ρ, τ) ∝ xγ−1 exp(−ρx − τ/x) is the gen-
eralized inverse Gaussian (GIG) distribution, x̃ftm is the
transformed power spectrogram |qH

fmxft|2 ∈ RM
+ , and ωftm

and ψnkftm (
∑

n,k ψnkftm = 1) are auxiliary parameters
obtained as follows:

ωftm = Eq [zngnmwnkfhnkt] , (29)

ψnkftm ∝ Eq

[
1

zngnmwnkfhnkt

]−1

. (30)

The expectations Eq[x] and Eq[
1
x ] with a random variable x

following a GIG distribution can be calculated as described
in [19].

2) Variational M step: By using the IP algorithm [7], the M
step updates the diagonalizer qfm such that the log-marginal
likelihood is maximized:

Vfm =
1

T

∑
n,k,t

xftx
H
ftψ

2
nkftmEq

[
1

zngnmwnkfhnkt

]
, (31)

qfm ← (QfVfm)
−1

em, (32)

qfm ← qfm(qH
fmVfmqfm)−

1
2 , (33)

where em is a one-hot vector whose m-th element is one. Note
that, in fact, the diagonalizer Qf gradually converges to 0
because the other parameters, Z, G, W, and H, are assumed
to be sparse, and the diagonalizer is updated with no prior
distribution. As similar to the Bayesian ILRMA [20], [21], we
solve this problem by a heuristic manner that Qf is normalized
such that the average value of |Qfxft|2 equals that of |xft|2.
Although this normalization breaks the monotonically non-
decreasing property of the VEM algorithm, we empirically
confirmed that the proposed method separated an unknown
number of sources properly.

IV. EXPERIMENTAL EVALUATION

We report experimental results with multichannel speech
mixture signals generated with simulated room impulse re-
sponses (RIRs).

A. Dataset

We generated multichannel signals by mixing L ∈ {2, 3, 4}
speech signals provided by WSJ0 English speech corpus. For
each condition of L, we generated 100 mixture signals by
using RIRs simulated with the image method [22]. The speech
signals were mixed at random powers uniformly chosen be-
tween −2.5 dB and +2.5 dB. As an overdetermined condition,
we assumed an M = 8 channel circular microphone array with
a diameter of 8 cm. The array was placed on the center of the
simulated room whose dimensions were 10 m × 10 m × 3 m.
The sound sources were placed randomly around the array
such that the horizontal angle differences between two sources
from the array had at least 60◦. The reverberation time (RT60)
was set to 200, 300, or 400 ms. We added Gaussian noise with
a signal-to-noise ratio (SNR) of 30 dB. These signals were
generated with a sampling rate of 16 kHz.

B. Experimental conditions

The hyperparameters of the proposed method were deter-
mined experimentally; az was set to 0.01, ag and aw were set
to 10.0, and ah was set to 5.0. The multichannel spectrograms
were obtained by performing the short-time Fourier transform
(STFT) with the window length of 1024 samples and a shifting
interval of 256 samples. As inspired by [12], we iterated 50
times with K = 2 and then 150 times with K = 32 to avoid
the frequency permutation problem. The maximum number of
sources N (truncation level) was set to 8. The parameters were
randomly initialized to be estimated.

We compared the proposed method (GaP-FastMNMF) with
ILRMA having the rank-1 spatial model and FastMNMF
having the JD full-rank spatial model. The number of bases
vectors K for both ILRMA and FastMNMF was set to 2,
which gave the best performance in K ∈ {2, 4, 8, 16, 32}. The
parameters were updated for 200 times. The FastMNMF was
evaluated with the number of sources N ∈ {2, 3, . . . ,M}.

The separation performance was evaluated by using the
scale-invariant source-to-distortion ratio (SI-SDR) [23]. The
SI-SDRs for a mixture were evaluated with top L sources
having large powers in the N separated signals. We also
evaluated the source counting accuracy (the percentage of
correct estimates). The source counting was performed by
counting the number of estimated sources that had more power
than −15 dB from the average power of the observed signal.

C. Experimental results

The separation performances are summarized in Fig. 2.
First, we can see that the SI-SDR of FastMNMF changed
drastically according to the number of sources N . The best
values of N for FastMNMF were between L+ 2 and L+ 4.
It is difficult to appropriately configure this parameter N in
advance because the best configuration is affected by not
only the actual number of sources but also the reverberation
and diffuse noise [12], [24]. In contrast, the proposed GaP-
FastMNMF robustly separated the unknown number of sound
sources. We can see that the SI-SDR of the GaP-FastMNMF
was comparable to that of the FastMNMF having the best
configuration of N .

The performances of source counting are summarized in
Fig. 3. GaP-FastMNMF achieved the best counting perfor-
mance when the RT60 was 200 ms. The counting accuracy
of GaP-FastMNMF at this condition was more than 90 %.
On the other hand, the counting performance deteriorated
as the reverberation increased. This could be overcome by
combining the proposed GaP-FastMNMF with dereverberation
frameworks such as autoregressive models [25].

V. CONCLUSION

This paper presented a BSS method that can separate an
unknown number of sound sources in a Bayesian manner.
The proposed method is based on FastMNMF, which has the
JD full-rank spatial model and the NMF source model. We
handle the unknown number of sound sources by introducing
latent source activation variables for making redundant source
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Fig. 2. Box plots of SI-SDRs for the separated signals by ILRMA, FastMNMF
(N = 2, . . . , 8), and GaP-FastMNMF.
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Fig. 3. Source counting accuracy of ILRMA, FastMNMF (N = 2, . . . , 8),
and GaP-FastMNMF.

classes shrink. The inference is conducted by a VEM algo-
rithm to jointly estimate the diagonalizer and the posterior
distributions of the latent variables. We demonstrated that
the proposed GaP-FastMNMF robustly separated an unknown
number of sound sources while the conventional FastMNMF
required careful tuning depending on the actual number of
sources in a mixture.

Our future work includes utilizing the beta process [17] that
can explicitly count the number of sound sources by introduc-
ing a binary activation variable to the source spectrogram. We
also plan to extend our method to a nested non-parametric
model to jointly estimate the number of sound sources and
that of bases vectors for NMF. This extension will enable the
method to automatically determine all the model complexity
according to the observation.
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