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Abstract—This article considers the decomposition of a non-
negative signal into a non-negative linear combination of the
contributions of pre-specified atomic units, which are also non-
negative. This model, referred as compositional model, is evident
in the time-frequency characterisations of audio signals, where
the sound can be viewed as a blending of spectral patterns
of the component sounds that are present simultaneously. The
algorithm proposed in this article obtains the activation vector
of the atoms through an Active-Set Newton algorithm that
employ the Alpha-Beta-divergence between the observed signal
and the decomposition. This divergence family has been proved
to be more efficient than other more common divergences, such
as the generic Kullback-Leibler divergence in various audio
signal processing applications. We have evaluated the proposed
algorithm in a signal separation application of polyphonic music.

Index Terms—Alpha-Beta divergence, Active Set-Newton al-
gorithm, signal separation, dictionary learning, compositional
model

I. INTRODUCTION

The problem of signal separation is one of the most popular
in the field of signal processing. In its broadest definition, it
consists of the recovery of a series of source signals that are
mixed in a set of observations. When the source signals are
audio signals, the compositional model [1] has been effective
in solving the problem of signal separation, both blind [2]
and supervised [3], [4]. The compositional model of sound
considers that any audio signal can be represented through
an additive combination of elementary sound units or atoms,
a dictionary being a collection of atoms representative of a
certain type of sound.

Mathematically, the compositional model can be expressed
as follows. Given a non-negative column vector x of length
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F , a set of N atoms bn ∈ RF×1+ and N non-negative weights
wn, with n = 1 · · ·N , the compositional model of x can be
written as follows:

x ≈ x̂ =

N∑
n=1

wnbn, wn ≥ 0, ∀n (1)

and in matrix form as:

x ≈ x̂ = Bw, w ≥ 0 (2)

where w = [w1, · · · , wN ]
T is the vector of weights and

B = [b1, · · · ,bN ] is the dictionary, a matrix in whose
columns the atoms are arranged.

The compositional model is most evident in the time-
frequency transformed domain, e.g. through the Short-Time
Fourier Transform (STFT). In this transformed domain, each
atom corresponds to a spectral pattern of the audio signal (in
magnitude or power). The dictionaries of each type of sound
would therefore be composed of a set of spectral patterns
characteristic of that type of sound. In the vast majority
of cases, a given type of sound has a large number of
spectral patterns associated with it. For example, the sound
coming from a certain musical instrument must contemplate
the different spectral patterns that are obtained depending on
the musical note, the attack or stabilisation phase of the sound
as well as the different materials and/or manufacturers of the
instrument. For all these reasons, audio signal dictionaries are
usually composed of a high number of atoms, so that the
compositional model of the audio signal usually has a sparse
or low-density characteristic, i.e. with a small number of non-
zero weights in the decomposition.

Signal separation using the compositional model of sound
considers that the magnitude of the STFT of each source signal
Si(f, t) can be approximated by an additive combination of
atoms that are in known and pre-trained dictionaries, which
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have been previously estimated for that type of audio signal
[5]. Therefore, the magnitude of the STFT of a mixture of M
audio signals X(f, t), can be expressed as an additive sum
of atoms stored in M pre-trained dictionaries Bi(f) where
i = 1, · · · ,M . The separation of the source signals is achieved
by estimating the matrix of weights w that approximates the
observation to the compositional model at each time index t
of the STFT:

X̂(f, t) = B(f)w(f, t) (3)

where B(f, t) is the matrix of dictionaries composed of the
concatenation of the M pre-trained dictionaries Bi(f):

B(f) = [B1(f)B2(f) · · ·BM (f)] (4)

and w =
[
w1(f, t)

Tw2(f, t)
T · · ·wM (f, t)T

]T
.

Once the weights are estimated, the magnitude of the STFT
of each source signal Ŝi(f, t) is obtained by ”Wiener-style”
reconstruction as:

X̂i(f, t) = Xi(f, t) ◦
Bi(f)wi(f, t)

B(f)w(f, t)
(5)

and then reconstructed to the time domain through the inverse
STFT copying the phases from the mixture spectrum.

The decomposition of a signal following the compositional
model can be interpreted as a non-negative matrix factorisation
(NMF) problem in which the decomposition is performed
by minimising a distance or divergence measure between the
observation X(f, t) and the linear model X̂(f, t), where it is
necessary to introduce sparse constraints to take into account
the sparsity characteristic of the compositional model of the
audio signal. However, these methods are computationally
very expensive when the dictionaries are very large and when
it is necessary to add sparse constraint regularisation terms.

Another family of methods that are computationally less
expensive than the NMF methods are the active set methods
that are part of the large set of iterative methods for the
optimisation of non-linear functions with linear constraints.
In our problem to be solved, the linear constraints consist in
the non-negativity of the weights to be estimated. This type
of iterative strategy has been used for the separation of audio
signals, resulting in the ASNA algorithm (acronym for Active-
Set Newton Algorithm) proposed in [5] and in [6] with the
addition of sparse constraints. The original ASNA algorithm
minimised the Kullback-Leibler (KL) divergence between the
observation x and the linear model x by employing Newton’s
algorithm and the full Hessian matrix for optimisation. In
[4] the ASNA-AB algorithm was proposed by replacing the
KL divergence in the cost function by the family of Alpha-
Beta divergences. This family of divergences, governed by two
parameters α and β, has a huge potential since it integrates and
connects a large number of already known divergences, such
as the Kullback-Leibler, Itakura-Saito, Alpha-divergences, etc.
Moreover, it has been shown to be useful in several ap-
plications related to audio signal processing, such as for
the separation of convolutional mixtures of speech [7], the

recognition of speech in noise [8] and the classification of
audio signals into musical genres [9].

The ASNA-AB algorithm proposed in [4] considered the
parameterisation of the most general Alpha-Beta divergence,
obtained when α, β, α+ β 6= 0. In this article the method has
been extended to all possible values of α, β ∈ R.

The organisation of this article is as follows: Section II
presents the complete formulation of the Alpha-Beta diver-
gence and some of its most interesting properties for audio
signal processing; Section III details the ASNA-AB algorithm
for all possible values of α, β ∈ R; Section IV illustrates the
performance of the algorithm for audio signal separation while
Section V presents the conclusions.

II. THE FAMILY OF ALPHA-BETA DIVERGENCES

The Alpha-Beta divergences, introduced in [12], are a
measure of dissimilarity between positive data, governed by
two parameters α and β. Given two non-negative matrices
P ∈ RI×T+ and Q ∈ RI×T+ with entries pit = [P]it and
qit = [Q]it, the Alpha-Beta divergence is given by:

Dα,β
AB (P‖Q) =

∑
it

dα,βAB (pit, qit) (6)

where dα,βAB (pit, qit) is defined as (7).
Several divergences and distances employed in the field of

audio signal processing belong to the family of Alpha-Beta
divergences. For example, the Kullback-Leibler divergence is
obtained for (α, β) = (1, 0), the Itakura-Saito divergence for
(α, β) = (1,−1), the Alpha-divergences for α + β = 1 and
the Beta-divergences for α = 1.

In the context of audio signal decomposition, the scaling
property of the Alpha-Beta divergence is of particular interest.
This property states that we can control the scaling of the
divergence arguments by adjusting the α and β parameters
even obtaining scaling invariant divergences when α+β = 0:

Dα,β
AB (cP‖cQ) = cα+βDα,β

AB (P‖Q) (8)

The dynamic range of audio signals can be high and the e-
nergy of the high-frequency components are, in general, lower
than the low-frequency components. If the divergence used in
the decomposition of an audio signal is not scaling invariant,
the magnitude of the errors made in the decompositions can
be much larger for low frequency components than for high
frequencies [1].

Another relevant feature of the Alpha-Beta divergences is
that they are convex with respect to the second argument qit
for values of (α, β) that lie within the convex cone bounded
by α+β = 1 and β = 1 [12]. Nevertheless, this convex region
widens for sufficiently small relative errors between pit and
qit, as we will see in the simulation results in Section IV.

III. THE ASNA-AB ALGORITHM

The ASNA-AB algorithm we propose in this work, as does
the ASNA algorithm in [5] and the algorithm proposed in
[4], iteratively update the active set A to find the optimal
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dα,βAB (pt, qt) =



− 1

αβ

(
pαt q

β
t −

α

α+ β
pα+βt − β

α+ β
qα+βt

)
, for α, β, α+ β 6= 0

1

α2

(
pαt ln

pαt
qαt
− pαt + qαt

)
, for α 6= 0, β = 0

1

α2

(
ln
pαt
qαt

+

(
pαt
qαt

)−1
− 1

)
, for α = −β 6= 0

1

β2

(
qβt ln

qβt

pβt
− qβt + pβt

)
, for α = 0, β 6= 0

1

2
(ln pt − ln qt)

2
, for α, β = 0

(7)

set of active atoms. The active set A is therefore composed
of the indices corresponding to the atoms of the dictionary
matrix with non-zero weights. At each iteration the weights
of the active atoms are updated using Newton’s algorithm.
For simplicity of notation we will describe the algorithm for a
generic observation x and later, in Section IV, we will describe
the use of the algorithm for the decomposition of an audio
mixture X(f, t) .

The proposed algorithm consists of the following steps:

Step 1. Inicialization

First, the dictionary atoms are normalised to have Euclidean
unit norm. Then the optimal weights of the atoms wn are
obtained by minimising the Alpha-Beta divergence between
the observation vector and the corresponding atom bn:

wn = argmin
wn

DAB (x‖wnbn) (9)

The solution to this optimisation problem is obtained by
deriving the above cost function with respect to the weight
wn and equalling zero, yielding:

wn =



(
xαTbβn

1Tbα+βn

) 1
α

, for α 6= 0

exp

bn
βT ln

(
x
bn

)
1Tbβn

 , for α = 0

(10)

where 1 represents a vector of ones of length F . Once
the optimal weights have been obtained, the active set is
initialised with the atom and its corresponding weight that
provides the minimum cost in terms of Alpha-Beta divergence
DAB (x‖wnbn):

A ← argmin
n

DAB (x‖wnbn) . (11)

Step 2. Updating the active set

The active set is iteratively updated so that a new atom is
added every K = 2 iterations. Let AB(w) be the cost function
defined as the Alpha-Beta divergence between the observation
vector x and the model x̂ = Bw:

AB(w) = DAB (x‖Bw) . (12)

The atom added to the active set is the atom with the largest
negative value of the partial derivative of the cost function
AB(w) with respect to the weight wn:

A ← A∪
{
argmin
n/∈A

∂

∂wn
AB(w)

}
(13)

This partial derivative can be expressed in matrix form as:

∂

∂wn
AB(w) =



1

α
bTn

(
x̂α+β−1 ◦

(
1−

(x
x̂

)α))
,

for α 6= 0

bTn

(
x̂β−1 ◦ ln

(
x̂

x

))
,

for α = 0

(14)

where ◦ denotes the Hadamard product and the vector
division is done point by point. The weight assigned to the
atom to be added to the active set is initialised to a small
positive value, in particular 10−15 . If all partial derivatives
calculated following (14) are positive, no atom is added to the
active set.

Step 3. Updating weights

Let BA be the dictionary composed of the bases that are in
the active set A and wA be the weights of these bases. The
observation vector model can then be expressed as x̂ = BA.
The update of the weights of the atoms in the active set is
done following Newton’s method:

wA ← wA − µHwA
−1∇wA (15)

where µ is the step size, x is the gradient of the cost function
DAB(x‖BAwA) with respect to the vector of weights of the
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active set and HwA is the Hessian matrix. The resulting matrix
expressions for the gradient and the Hessian are as follows:

∇wA =



1

α
BT
A

(
x̂α+β−1 ◦

(
1−

(x
x̂

)α))
,

forα 6= 0

BT
A

(
x̂β−1 ◦ ln

(
x̂

x

))
,

for α = 0

(16)

and
HwA = BT

Adiag (v)BA (17)

where v is a vector defined as:

v =



x̂α+β−2 ◦
((

α+ β − 1

α

)
1+

(
1− β
α

)(x
x̂

)α)
,

for α 6= 0

x̂β−2 ◦
(
1+ (1− β) ln

(x
x̂

))
,

for α = 0
(18)

To ensure numerical stability in the inversion of the Hessian
matrix in (15), it is necessary to add to the Hessian matrix
an identity matrix multiplied by a small positive constant,
10−10 in our implementation, before performing the inversion.
Finally, given the vector r defined as:

r =
wA

H−1wA∇wA

(19)

the step size µ that guarantees that the resulting weights are
non-negative is given by:

µ = min(min ri
ri>0

, 1) (20)

If, as a result of the above update, the weight obtained is
zero, the corresponding atom is removed from the active set.

Step 4. Finalisation

The algorithm iteratively repeats steps 2 and 3 until all
derivatives in (14) take non-negative values, although in prac-
tice a maximum number of iterations is fixed. As in the ASNA
algorithm, two Newton updates (step 3) are performed before
each update of the active set (step 2).

IV. SIMMULATIONS

The ASNA-AB algorithm proposed in this article has been
implemented in MATLAB using a columnar scheme following
the recommendations in [13]. The resulting implementation
can work simultaneously with multiple observations with X ≈
X̂ = WB subject to W,≥ 0. With this implementation, the
O observations are in the rows of X ∈ RO×F+ , and the non-
negative weights corresponding to each observation are found
in the rows of W ∈ RO×NA+ , where NA is the total number
of atoms in the dictionary matrix B.

Simulations in the field of audio signal separation have
been performed using the same methodology as in [5], but
using the Bach10 music database [14]. The Bach10 database

Fig. 1. Performance of the ASNA-AB algorithm for the separation of four
instruments in the αβ-plane in terms of SIR (dB).

is composed of 10 polyphonic pieces of music (soprano, alto,
tenor and bass) performed by the instruments violin, clarinet,
saxophone and bassoon. The database provides the .wav files
of the four instruments as well as the mix of them. The
sampling frequency is 44100 Hz and the duration of the pieces
varies between 25 and 42 seconds. The first 9 pieces have been
used to obtain the dictionaries of each of the instruments and
the last piece has been used to separate the four instruments
from the mix using the proposed ASNA-AB algorithm.

To obtain the observation vector in the time-frequency
domain, we have used the magnitude of the short Fourier
transform (STFT) calculated with a Hanning-type windowing
of 60 ms and a displacement size of 15 ms. The dictionaries
of the four instruments, consisting of 1000 atoms each, have
been obtained by grouping the different spectral components
obtained by the STFT with the k-means algorithm. The
separation results obtained for the four instruments in terms of
SIR (dB) measured with the tool BSSEVAL [15] are presented
in Fig. 1. Simulations have been performed for values of α
and β within the ranges −4 ≤ α ≤ 4 and −4 ≤ β ≤ 4 with
step size equal to 0.2.

As it can be observed, the best results for all instruments
are reached in a region delimited by the lines α+ β = 1 and
α = −β which correspond to the family of Alpha-divergences
and a Generalized Itakura-Saito (Gen-IS) distance with an α-
zoom of its arguments respectively:

D
(α,1−α)
AB (P‖Q) = D

(α)
A (P‖Q) (21)

D
(α,−α)
AB (P‖Q) =

1

α2
DIS

(
P.[α]‖Q.[α]

)
(22)

where P.[α] denotes the one to one transformation that raises
each element of the vector P to the power α.
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TABLE I
PERFORMANCE OF THE ASNA-AB ALGORITHM FOR SOME SPECIFIC

DISTANCES AND DIVERGENCES IN TERMS OF SIR (DB)

Alpha-Beta SIR (dB)
Parametrization Violin Clarinet Bassoon Saxophone

Kullback-Leibler (1,0) 10.86 7.88 6.63 11.02
Euclidean (1,1) 7.94 6.22 5.07 9.54

Itakura-Saito (1,-1) 9.93 9.66 7.53 7.53
Alpha-div. (0,1) 11.76 7.38 5.81 10.86
Alpha-div. (2,-1) 10.20 8.23 7.21 10.88
Alpha-div. (-1,2) 13.21 6.75 4.73 10.13
Alpha-div. (-2,3) 15.44 5.51 3.26 8.34
Beta-div. (1,-0.4) 12.06 9.52 6.59 10.13
Gen-IS div. (2,-2) 9.71 10.34 7.39 6.91

Nevertheless, not all instruments achieve their best result
with similar parameterisations of the algorithm. The violin
performs best for negative values of alpha, while the other
instruments perform best for positive values of alpha. This
suggests a dependence of the optimal parameters α and β with
the timbres of the instruments (which are related to their spec-
tral envelopes) and possibly with their ranges (related to the
played notes). Additionally, we observe that for α+β < 0, the
performance of the algorithm deteriorates drastically probably
due to the inversion of the arguments of the AB-divergence.
This behaviour is also observed in other applications of AB-
divergences [9], [12].

Additionally, one can observe that the best performing
regions of the algorithm for the violin, bass and saxophone
are inside the convex cone in which the convexity of the AB-
divergence is guaranteed with respect to the second argument,
while for the clarinet the best region is outside the convex
cone. As mentioned in Sec. II, the region of convexity is not
strictly limited to the convex cone, and therefore it is always
interesting to explore what happens outside the convex cone
since the algorithm can still converge in nearby regions.

Table I summarises the results for some specific divergences
and distances. While Kullback-Leibler divergence (α, β) =
(1, 0), exploited in [5], can be a good choice, other alternatives
can improve the results. The pair (α, β) = (−2, 3) could be
desirable when we are exclusively interested in the extraction
of the violin track, improving the results of Kullback-Leibler
divergence by more than 4.5 dB. For the separation of the
four instruments the pair (α, β) = (2,−1) as well as the
pair (α, β) = (1,−0.4) can be preferable to Kullback-Leibler
divergence. The first one, (α, β) = (2,−1), improves the re-
sults for the ”worst” instruments (the bassoon and the clarinet)
while the results for the ”best” instruments do not noticeably
worsen, providing a global improvement of 0.13 dB. On the
other hand, the second pair (α, β) = (1,−0.4) provides an
apreciable improvement of the SIR for the violin and clarinet
(1.2 dB and 1.64 dB respectively), while the behaviour for
saxophone and bassoon do not noticeably worsen.

V. CONCLUSSIONS

A generalization of the Active-Set Newton Algorithm has
been proposed, exploiting the generalized Alpha-Beta diver-

gence between the observed signal and the decomposition,
instead of the Kullback-Leibler divergence. The proposed
algorithm decomposes the non-negative observed signal into
a non-negative linear combination of the contributions on
non-negative pre-specified atoms. This compositional model is
exploited in the time-frequency domain for the characterisation
of audio signals. A set of numerical experiments have been
performed in order to evaluate the use of the proposed method
for the separation of polyphonic music. These experiments
have shown that there are some pairs of the alpha-beta
parameters that improve the results of the separations with
respect to the Kullback-Leibler divergence.
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