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Abstract—Audio source separation is often used as prepro-
cessing of various applications, and one of its ultimate goals is
to construct a single versatile model capable of dealing with
the varieties of audio signals. Since sampling frequency, one
of the audio signal varieties, is usually application specific, the
preceding audio source separation model should be able to
deal with audio signals of all sampling frequencies specified in
the target applications. However, conventional models based on
deep neural networks (DNNs) are trained only at the sampling
frequency specified by the training data, and there are no
guarantees that they work with unseen sampling frequencies. In
this paper, we propose a convolution layer capable of handling
arbitrary sampling frequencies by a single DNN. Through music
source separation experiments, we show that the introduction
of the proposed layer enables a conventional audio source
separation model to consistently work with even unseen sampling
frequencies.

Index Terms—Audio source separation, analog-to-digital filter
conversion, deep neural networks

I. INTRODUCTION

Audio source separation is a technique for extracting in-
dividual sources from a mixture signal. It is one of the
fundamental techniques for various audio applications includ-
ing music remixing, automatic music transcription, and auto-
matic speech recognition. The recent development of source
separation has been built upon machine leaning techniques
using the deep neural network (DNN) [1]–[9]. Since source
separation is often utilized as a preprocess of another task, one
of the ultimate developmental goals is to construct a single
universal DNN that can be utilized as the preprocessor for
any application. To realize such an almighty source separator,
every variety of applications and conditions must be handled
by a single DNN.

One important but often unnoticeable variety of audio
signals is sampling frequency. It is usually application specific,
and hence a preprocessor must be designed for the sampling
frequency specified by the following application. For example,
for music remixing and editing, 44.1 and 48 kHz are usually
used as sampling frequencies to cover the entire human audible
range [5], [8]. This is because these applications are aimed
at human listeners. In contrast, the applications aimed at the
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recognition of the contents contained in audio signals do not
require such full-band information. For example, beat tracking
may use 16 kHz [10], automatic music transcription may
use 11.025 and 22.05 kHz [11], [12], and automatic speech
recognition may use 8 and 16 kHz [13]–[15]. A versatile
preprocessor must be able to handle signals sampled at all
of these sampling frequencies.

However, ordinary DNNs cannot handle audio signals sam-
pled at various sampling frequencies. Conventional DNN-
based models work well for the sampling frequency specified
by the training data [1]–[9]. The parameters of a DNN are
trained to adapt for the training dataset, and thus there is
no guarantee of applicability for signals that are sampled
at the other (unseen) sampling frequencies. This is because
the layers utilized in a DNN are not designed for multiple
sampling frequencies. In fact, the sampling frequency has not
been considered as a parameter of a DNN, but it is implicitly
given by the training dataset. In order to realize a DNN
that consistently works for any sampling frequency, a DNN
must be designed as a sampling-frequency-independent (SFI)
network.

In this paper, we propose an SFI convolution layer for the
handling of arbitrary sampling frequencies by a single DNN.
The key idea behind the proposed layer is to consider the con-
nection between a digital filter and a convolution layer. From
a signal processing viewpoint, we can interpret a convolution
layer as a collection of time-reversed digital finite impulse
response (FIR) filters. Therefore, a filter design technique can
be utilized to design a convolution layer. In this paper, we
consider the impulse invariant method (see Chap. 7 in [16]),
in which a digital filter is designed by sampling an analog
filter. On the basis of this analog-to-digital filter conversion,
we introduce latent analog filters into a convolution layer.
Since an analog filter is independent of sampling frequency,
we can construct an SFI convolution layer via the analog
representation of a filter, where the impulse invariant method
determines its sampling frequency afterward. The proposed
SFI layer can be trained by parametrizing the analog filter as
a differentiable function. By incorporating the proposed layer
into one of the state-of-the-art source separation models, we
also propose an SFI audio source separation model.
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Fig. 1: Architectures of (a) Conv-TasNet [3] and (b) proposed model, and (c) illustration of proposed SFI convolution layer.

II. CONVENTIONAL MODELS

A. Conv-TasNet [3]

Conv-TasNet is a recent time-domain DNN for audio source
separation that works well for speech [3] and music source
separation [5], [17]. Since the architectures of Conv-TasNet
are slightly different in those three papers, we adopt the
Conv-TasNet architecture for music source separation defined
in [17], as illustrated in Fig. 1(a). Conv-TasNet consists of
a pair of an encoder and a decoder and C source-specific
masking modules, where C denotes the number of sources.
The encoder and decoder imitate a traditional time-frequency
transform (e.g., the short-time Fourier transform) and its
inverse transform. The encoder transforms a monaural time-
domain signal into an N -channel latent representation by a
one-dimensional (1D) convolution layer (with kernel size L
and stride W ) and the rectified linear unit (ReLU). Each
masking module estimates a mask for the target source from
the latent representation. It comprises R convolution blocks,
each of which consists of X 1D dilated convolution layers with
an exponentially increasing dilation factor. The details of the
convolution block are shown in [3]. The decoder converts the
masked latent representations into the separated time-domain
signals by a 1D transposed convolution layer with kernel size
L and stride W .

B. Multi-phase Gammatone Filter [7]

In [7], the multi-phase gammatone filter (MP-GTF) was
introduced to design the weights of the convolution layer
of the encoder of Conv-TasNet, which improved the speech
separation performance. The impulse response of the MP-GTF
is given by

g(MP-GTF)(t) = a tp−1e−2πbt cos (2πft+ φ), (1)

where a denotes the amplitude, p the filter order, b the
bandwidth, f the center frequency, and φ the phase shift.
The parameter b is given by b = ERB(f)/1.57, where
ERB(f) = 24.7 + f/9.265. By sampling L points from
g(MP-GTF)(t) for various f and φ, we obtain N discrete-time
impulse responses of length L and concatenate them along
the channel axis to form the weights as a 1 ×N × L tensor.
The convolution layer of the encoder is followed by the ReLU

nonlinearity, which blocks the negative values of the MP-GTF
output and discards the information of the input signal. To
avoid a lack of information, g(MP-GTF)(t) is used together
with its phase-reversed version, i.e., with the phase shift φ+π
[7].

C. Multiple-sampling-frequency Training [13]–[15], [17]

There exist a few methods of training DNNs using audio
signals sampled at multiple sampling frequencies [13]–[15],
[17]. In [13], [14], an automatic speech recognition (ASR)
model was trained using audio signals sampled at 8 and 16
kHz, where the part of input features corresponding to the
missing frequency band was padded by zeros. In [15], to
compensate the missing frequency band, an ASR model was
jointly trained with a bandwidth expansion model. The music
source separation model presented in [17] was constructed
by stacking three Conv-TasNets that account for sampling
frequencies of 8, 16, and 32 kHz. The Conv-TasNets for 16
and 32 kHz estimate the source signals of the target sampling
frequencies, referring to the masked latent representations
obtained with the lower sampling frequencies.

While these training methods are valid for the trained
sampling frequencies, they are not guaranteed to work with
unseen sampling frequencies. In contrast, we explicitly define
an SFI structure to handle any sampling frequency without
retraining as shown later in Section III.

III. PROPOSED MODEL

A. Sampling-frequency-independent (SFI) Convolution Layer

To realize an SFI network, we introduce latent analog
filters and analog-to-digital filter conversion into a convolution
layer. By interpreting the weights of a convolution layer as
a collection of time-reversed digital FIR filters, we consider
them from a signal processing viewpoint. The digital filters
are inherently sampling frequency dependent, whereas analog
filters are SFI owing to their definition in the continuous time
domain. Focusing on this fact, we introduce latent analog
filters behind a convolution layer so that its weights can be
adjusted using the sampling frequency of an input signal.

As shown in Fig. 1(c), the proposed layer consists of
the usual 1D convolution layer and impulse responses of
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M (in)M (out) analog filters defined in the continuous time
domain, where M (in) and M (out) are the input and output
channel sizes, respectively. The generating process of the
proposed layer consists of three steps. Given the sampling
frequency of an input signal, the proposed layer (i) generates
a discrete-time impulse response of length L from each
analog filter, (ii) stacks the time-reversed versions of these
discrete-time impulse responses to form the weights as an
M (in) ×M (out) × L tensor, and (iii) works as the usual con-
volution layer using them. Since steps (i) and (ii) depend only
on the sampling frequency and the continuous-time impulse
responses, we only need to perform them once (before the
features are input) whenever the sampling frequency changes.

For step (i), we employ the impulse invariant method to
generate digital FIR filters from their analog counterparts. Note
that while this method is originally for the design of infinite
impulse response filters, we can use it for the digital FIR filter
design. Let us denote the sampling period as T , a discrete time
index as l = 1, · · · , L, and the continuous time as t ∈ R. The
impulse invariant method generates a discrete-time impulse
response h[l] from an analog filter g(t) so that the sampled
instants coincide:

h[l] = Tg(lT ). (2)

Changing T yields an impulse response for different sampling
frequencies 1/T . By stacking the generated impulse responses,
the weights for the convolution layer is obtained in step
(ii). Similarly, an SFI version of a transposed convolution
layer (SFI transposed convolution layer) is given by changing
the convolution layer in the SFI convolution layer to the
transposed convolution layer.

For the analog filter g(t), we can use the MP-GTF in
Eq. (1). The continuous-time impulse responses can be dif-
ferent for each channel, and hence, hereafter, a channel
subscript m is added to g(MP-GTF)(t) and its parameters:
g
(MP-GTF)
m (t), am, pm, bm, fm, and φm. Whereas all param-

eters of g(MP-GTF)
m (t) were fixed in [7], we propose to train

fm and φm jointly with the other DNN components by the
commonly-used backpropagation algorithm.

The gradient of h[l] can be computed in the same manner as
the usual convolution layer. Since the gradient of h[l] equals
that of g(lT ) owing to Eq. (2) and g

(MP-GTF)
m (t) is differ-

entiable with fm and φm, the gradients of the trainable pa-
rameters of g(MP-GTF)

m (t) can be computed by the chain rule.
These computations can be easily implemented by defining the
forward computation process of the proposed layer owing to
the automatic differentiation mechanism installed in modern
deep learning frameworks (e.g., PyTorch and TensorFlow).

B. Aliasing Reduction Technique

Since the impulse invariant method simply performs sam-
pling to an analog filter, aliasing occurs in the obtained
digital filters. As reported in [6], [18], [19], aliasing causes
degradation of the DNN performance, and thus we introduce
an aliasing reduction technique. Since the energy of aliased
components is distributed above the Nyquist frequency, we

TABLE I: Features of proposed methods and Conv-TasNet

Method gm(t)
Samp. freq. Aliasing

adapt. reduction
Conv-Tasnet [3] - No -

T-MP-GTF g
(MP-GTF)
m (t) No No

Proposed g
(MP-GTF)
m (t) Yes No

Proposed+ g
(MP-GTF)
m (t) Yes Yes

TABLE II: Hyperparameters of masking modules used in
experiments

Symbol Description Value
N # of channels of latent representation 440

B
# of channels in bottleneck and

160residual paths’ 1× 1 convolution blocks

Sc
# of channels in skip-connection paths’

160
1× 1 convolution blocks

H # of channels in convolution blocks 160
P Kernel size in convolution blocks 3

propose to set the weights of the mth channel to zero whenever
the center frequency fm of the corresponding analog filter is
above the Nyquist frequency. This aliasing reduction technique
is important for the proposed layer when it is utilized with low
sampling frequencies, as shown later in Section IV.

C. Application of Proposed Layers to Conv-TasNet

As shown in Fig. 1(b), we build an SFI audio source
separation model by incorporating the proposed layers into
Conv-TasNet [3]. The convolution layer of the encoder and the
transposed convolution layer of the decoder are respectively
replaced with the SFI convolution and transposed convolution
layers. The masking modules are the same as in [3].

For our model, we should modify the kernel size L and
stride W in accordance with the sampling frequency during
inference. As described in Section II-A, the encoder and
decoder can be interpreted as the time-frequency transform
and its inverse transform. With this interpretation, L and W
correspond to the frame length and the frame shift, respec-
tively. Hence, as the sampling frequency doubles, L and W
should double to make the representation consistent for the
masking module. For this reason, we determine L and W for
each target sampling frequency to keep the frame length and
shift unchanged in the continuous time domain. By replacing
all convolution layers in the masking modules with the SFI
convolution layers, this issue might be resolved. However, we
left it as a future work because additional care regarding the
combination with other layers (e.g., group normalization [20])
must be considered.

IV. EXPERIMENTAL EVALUATION

A. Experimental Settings

To evaluate the efficacy of the proposed method, we con-
ducted music source separation on the MUSDB18-HQ dataset
[21], which consists of 86 training, 14 validation, and 50
test tracks. Each track contains separate recordings of four
musical instruments (vocals, bass, drums, and other), i.e.,
C = 4. The training and validation tracks were down-sampled
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Fig. 2: SDRs of Conv-TasNet and proposed models for test data at various sampling frequencies. These SDRs and error bars
respectively denote averages and standard errors over results obtained with four random seeds. Red line shows trained sampling
frequency.

to 16 kHz, and we created the test data by down- and up-
sampling the test tracks to several target sampling frequencies,
F

(target)
s = 8, 12, . . . , 48 kHz. As an evaluation metric, we

used the median signal-to-distortion ratios (SDRs) computed
with the BSSEval v4 toolkit [22].

We used the same data augmentation techniques as those
of [17]: random cropping of the 8 s training audio segments,
random amplification within [0.75, 1.25], random selection of
the left or the right channel, and random intertrack shuffling
of the instruments in half of the minibatch. We also applied
standardization (zero mean and unit variance) to the tracks.

We compared the proposed model (Proposed) and that
using the aliasing reduction technique (Proposed+) with Conv-
TasNet and its variant (T-MP-GTF) whose encoder and de-
coder instead use the trainable extension of MP-GTF as their
weights of the convolution and transposed convolution layers,
respectively. T-MP-GTF was included to separately evaluate
the trainable extension of the MP-GTF and the sampling
frequency adaptation. We applied all models to the audio
signals of the unseen sampling frequencies without resampling
them at the trained sampling frequency in order to examine
the effects of the sampling frequency mismatch and the
proposed sampling frequency adaptation. Table I summarizes
the features of these models. For Proposed and Proposed+,
we determined L and W to be 5.0 and 2.5 ms at the
sampling frequency of 16 kHz, respectively, as described in
Section III-C, whereas we set L = 80 and W = 40 for the
other models. For all models, we set X = 6 and R = 2.
The hyperparameters of the masking modules are shown in
Table II, where the symbols correspond to those used in the
literature of Conv-TasNet (see Table 1 in [3]).

For g
(MP-GTF)
m (t), we trained fm and φm for m =

1, . . . , 220 jointly with the entire network, and constrained
these parameters for the other ms so that fm+220 = fm
and φm+220 = φm + π, as described in Section III-A. We
initialized fm and φm as in [7]; let us denote 48 frequencies
distributed uniformly in the equivalent rectangular bandwidth
(ERB) scale [23] from 50 to 8000 Hz by f

(center)
i , where

i = 1, · · · , 48 is the center frequency index and fi < fi+1 for
all i. We initialized fm as fm = f

(center)
bm/Kc+1 for m = 1, . . . , 140

(m = 141, . . . , 220), where K = 5 (K = 4, respectively).

The phase shifts φm of the filters with the same f
(center)
i

were initialized to be uniformly distributed in [0, π). The other
parameters were set as am = 1, pm = 2. As in [7], these filters
were normalized so that they have the same l2 norm.

For training, we used the RAdam optimizer [24] with a
weight decay rate of 5.0×10−4 and the Lookahead mechanism
[25] with a synchronization period of 6 and a slow weights
step of 0.5. Gradient clipping with the maximum L2-norm of
5 was applied. The learning rate scheduler presented in [26]
was employed with an initial learning rate of 1.0× 10−3 and
a restart period of 200 000 iterations. We trained each model
with a batch size of 12 for 250 epochs, using the negative
scale-invariant source-to-noise ratio as the loss function, and
selected the model with the lowest validation loss. We applied
the trained models to the left and right channels of the
test tracks separately, and scaled the source estimates using
instrument-wise factors to minimize the mean squared error
between the input mixture and the sum of all instrument
estimates, resulting from the scale invariance of the loss
function [17].

B. Results

Fig. 2 shows the separation performances for the test data
with sampling frequencies from 8 to 48 kHz. At the trained
sampling frequency, 16 kHz, the proposed models including
T-MP-GTF achieved higher SDRs than Conv-TasNet for all in-
struments, showing the effectiveness of the proposed trainable
extension of the MP-GTF. Interestingly, the proposed models
gave much lower standard errors than Conv-TasNet, which
was not reported in [7]. This observation reveals that the use
of the trainable MP-GTF makes Conv-TasNet robust to the
initialization of the DNN parameters.

As the sampling frequency moved away from 16 kHz, the
SDRs of Conv-TasNet and T-MP-GTF greatly decreased and
they failed to separate the sources. By contrast, the proposed
models with the sampling frequency adaptation, Proposed and
Proposed+, provided similar SDRs for the 12- to 48-kHz-
sampled data and outperformed the other models by a large
margin, particularly at 20 kHz and higher, even though they
were trained only with the 16-kHz-sampled data. This result
clearly shows that the proposed sampling frequency adaptation
plays a crucial role in achieving the consistent performance.
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Fig. 3: Magnitudes of frequency responses of first 220 filters
of trained SFI convolution layer at sampling frequencies of
8, 16, and 32 kHz.

Fig. 3 shows the magnitudes of the frequency responses of
the filters of the trained SFI convolution layer at sampling
frequencies of 8, 16, and 32 kHz. We can confirm that the
filters of the 16 and 32 kHz sampling frequencies exhibited
consistent frequency responses. Importantly, the filters of the
32 kHz sampling frequency blocked the frequency components
higher than around 8 kHz. Nevertheless, the proposed model
achieved a consistent performance at the sampling frequencies
higher than 8 kHz, which should be because the dominant
frequency components of the music signals were distributed
below 8 kHz.

For the sampling frequency of 8 kHz, aliasing occurred
from 4 kHz (see Fig. 3(a)). This resulted in the performance
degradation of Proposed (the proposed method without the
aliasing reduction technique). By contrast, Proposed+ showed
a consistent performance at all sampling frequencies, demon-
strating the effectiveness of the proposed aliasing reduction
technique when the sampling frequency is reduced. For drums
and other, Proposed+ gave slightly lower SDRs than Proposed
at the sampling frequency of 12 kHz, which might be because
the filters with center frequencies near the Nyquist frequency
are helpful for the separation. A further investigation of this
observation remains as a future work.

V. CONCLUSION

We proposed an SFI convolution layer that can be adjusted
to an arbitrary sampling frequency. We focused on the fact
that the weights of a convolution layer can be seen as a col-
lection of digital FIR filters. We explicitly defined the weights
generation process of the convolution layer from the latent
analog filters based on the impulse invariant method. Since
the analog filters do not depend on sampling frequency, the
proposed layers can generate consistent weights for arbitrary
sampling frequencies. Furthermore, we built an SFI audio
source separation model by incorporating the proposed layers
into the encoder and decoder of Conv-TasNet. We showed,
through music source separation experiments, that even when
trained with only the audio signals sampled at a specific
sampling frequency, the proposed model consistently worked
well with not only the trained sampling frequency but also
unseen ones. Since the proposed layer is a general component
for audio processing, it would also be useful for various audio
applications such as speech separation [1]–[3], [7], [27].
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