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Abstract—We address the determined audio source separation
problem in the time-frequency domain. In independent deeply
learned matrix analysis (IDLMA), it is assumed that the inter-
frequency correlation of each source spectrum is zero, which is
inappropriate for modeling nonstationary signals such as music
signals. To account for the correlation between frequencies, inde-
pendent positive semidefinite tensor analysis has been proposed.
This unsupervised (blind) method, however, severely restrict the
structure of frequency covariance matrices (FCMs) to reduce
the number of model parameters. As an extension of these
conventional approaches, we here propose a supervised method
that models FCMs using deep neural networks (DNNs). It is
difficult to directly infer FCMs using DNNs. Therefore, we also
propose a new FCM model represented as a convex combination
of a diagonal FCM and a rank-1 FCM. Our FCM model is flexible
enough to not only consider inter-frequency correlation, but also
capture the dynamics of time-varying FCMs of nonstationary
signals. We infer the proposed FCMs using two DNNs: DNN
for power spectrum estimation and DNN for time-domain signal
estimation. An experimental result of separating music signals
shows that the proposed method provides higher separation
performance than IDLMA.

Index Terms—audio source separation, independent compo-
nent analysis, deep neural networks, inter-frequency correlation

I. INTRODUCTION

Multichannel audio source separation is a technique of
estimating source signals from their observed mixture using
a microphone array. In particular, a separation problem that
does not use any prior knowledge of the mixing system and
property of source signals is called blind source separation
(BSS) [1]. Frequency-domain independent component analysis
(FDICA) [2]–[4] and its multivariate extension, independent
vector analysis (IVA) [5]–[8], are common BSS methods for
a determined or overdetermined situation, i.e., the number
of microphones is equal to or greater than that of sources.
These methods deal with BSS in the time-frequency domain
using the short-time Fourier transform (STFT) and rely on
the statistical independence between sources to estimate the
demixing matrix.

To improve the separation performance of FDICA and IVA,
independent low-rank matrix analysis (ILRMA) [9]–[11] has
been proposed for modeling the source power spectra using
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nonnegative matrix factorization (NMF) [12], [13]. However,
this low-rank modeling of source spectra is not appropriate for
real-world signals such as speech and music signals [14]. In
addition, for the NMF model, it is assumed that the correlation
between the frequency bins is zero. In other words, the time
series of frequency covariance matrices (FCMs) for each
source is constrained to be a diagonal matrix, which is not
appropriate because many nonstationary signals are known to
have inter-frequency correlations.

As a supervised extension of ILRMA as well as FDICA,
independent deeply learned matrix analysis (IDLMA) [14],
[15] has been proposed. Instead of using NMF, in IDLMA,
a pretrained deep neural network (DNN) is used to model
a source power spectrum. If sufficient data are available for
training DNNs, DNNs can accurately estimate the source
power spectrum during the demixing phase. However, in the
same manner as in ILRMA, in IDLMA, it is still assumed that
each FCM is diagonal, which is inappropriate for modeling
nonstationary signals such as speech and music signals.

To consider the inter-frequency correlation of the source
spectra, a BSS method called independent positive semidef-
inite tensor analysis (IPSDTA) [16], [17] has been proposed
as an extension of ILRMA. In IPSDTA, positive semidefinite
tensor factorization (PSDTF) [18]–[20], which is an extension
of NMF to capture inter-frequency correlation, is incorporated
as the source spectrum model. Here, PSDTF is a method that
models the time series of FCMs for each source as a convex
cone of several FCM bases (which are Hermitian positive
semidefinite). However, this PSDTF model is too restrictive
to capture the nonstationarity of FCMs.

To overcome the drawbacks of the above conventional
methods, we here propose a new supervised source separation
method that accounts for the inter-frequency correlation using
a flexible and tractable model of FCMs. We call the proposed
method independent deeply learned tensor analysis (IDLTA)
because the time series of FCMs, which is a tensor, is
represented by DNNs. It is difficult to directly infer FCMs
using DNNs. Therefore, we also propose to restrict each FCM
to be a convex combination of the following two simple
FCMs: (i) One is a diagonal FCM that corresponds to the
power spectrum and can be estimated using DNNs in the
same manner as in IDLMA. (ii) The other is a rank-1 FCM
whose first eigenvector can be viewed as the original source
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signal and can be estimated using DNNs such as time-domain
audio separation network (TasNet) [21] and multiresolution
deep layered analysis (MRDLA) [22], [23]. We show that the
rank-1 FCM is an optimal FCM in some respect (Section IV-A)
but causes the numerical instability of IDLTA optimization.
Our proposed diagonal plus rank-1 FCM can compensate for
this issue while capturing the inter-frequency correlation. We
show in a numerical experiment that IDLTA provides higher
separation performance than IDLMA for a music separation
task.

II. AUDIO SOURCE SEPARATION PROBLEM

Suppose N source signals are observed by M microphones.
The source and observed signals in the STFT domain are
denoted as

sij := (sij1, ..., sijn, ..., sijN )> ∈ CN , (1)

xij := (xij1, ..., xijm, ..., xijM )> ∈ CM , (2)

respectively, where ·> denotes the transpose, and i = 1, . . . , I ,
j = 1, . . . , J , n = 1, . . . , N , and m = 1, . . . ,M are indices
of the frequency bins, time frames, sources, and microphones,
respectively. In this paper, we suppose that the window size
in the STFT is sufficiently longer than the impulse responses
between sources and microphones. In this case, the mixing
system can be expressed as

xij = Aisij ∈ CM , (3)

where Ai ∈ CM×N is a time-invariant mixing matrix at the
ith frequency bin. With the assumption that N = M and Ai

is invertible, the estimation of the original source sij , denoted
as yij := (yij1, . . . , yijN )>, can be obtained as

yij = Wixij ∈ CN , (4)

where Wi := (wi1, . . . ,wiN )
H ∈ CN×M is a demixing

matrix, and ·H denotes Hermitian transpose.

III. CONVENTIONAL METHODS

We summarize conventional methods in terms of FCMs and
discuss their drawbacks in Section III-C.

In conventional methods such as ILRMA [9], IDLMA [14],
and IPSDTA [16], it is assumed that the sources are mutually
independent. On the basis of this assumption and (4), the
likelihood of the observed signals is described as [1]

p
(
{xij}i,j

)
=
∏
n

p(Yn) ·
∏
i,j

|detWi|2, (5)

Yn := (~y1n, . . . , ~yJn) ∈ CI×J , (6)

~yjn := (y1jn, . . . , yIjn)
> ∈ CI , (7)

where ~yjn is a separated signal of source n and time frame
j. It is also assumed that the random variables ~y1n, . . . , ~yJn
are mutually independent and follow a multivariate complex
Gaussian distribution with the zero mean and covariance
matrix Rjn as follows:

p(Yn) =
∏
j

1

πI detRjn
exp

(
−~yH

jnR
−1
jn ~yjn

)
. (8)

Here, Rjn denotes the FCM. Then, the negative log-likelihood
of the observed signal is derived from (5) and (8) as

L c
=
∑
j,n

(
log detRjn + ~yH

jnR
−1
jn ~yjn

)
− J

∑
i

log |detWi|2, (9)

where c
= denotes equality up to a constant. The parameters

to be estimated are the demixing matrices {Wi}i and FCMs
{Rjn}j,n.

As we explain in the following subsections, conventional
methods such as ILRMA [9], IDLMA [14], and IPSDTA [16]
only differ in the way FCMs are modeled.

A. ILRMA and IDLMA

In ILRMA [9] and IDLMA [14], the time series of the
FCMs of source n, i.e., R1n, . . . ,RJn, is constrained to be
diagonal:

Rjn = Rdiag
jn := diag

{
σ2
1jn, . . . , σ

2
Ijn

}
, (10)

where diag{λ1, . . . , λI} denotes a diagonal matrix with λi
as its ith diagonal element. Furthermore, in IDLMA, Rdiag

jn ,
which corresponds to the power spectrum of source n, is
estimated using a pretrained DNN:

{Rdiag
jn }j = DNNdiag(Yn). (11)

Note that the input of DNNdiag is the separated signal Yn

in IDLMA. In ILRMA, on the other hand, Rdiag
jn is modeled

using NMF (see, e.g., [9]).

B. IPSDTA

In IPSDTA [16], the FCMs of each source n are modeled
by PSDTF [18], which is an extension of NMF:

Rjn =

Kn∑
k=1

hkjnUkn. (12)

Here, hkjn ≥ 0 and Ukn ∈ CI×I are an activation and a
time-invariant basis (Hermitian positive semidefinite matrix)
for source n, respectively, and Kn is the number of bases of
PSDTF. Since Rjn is nondiagonal, IPSDTA can consider the
inter-frequency correlation between frequency bins.

C. Drawbacks of ILRMA, IDLMA, and IPSDTA

In ILRMA and IDLMA, FCMs are assumed to be diagonal,
implying that the inter-frequency correlation of source spectra
is constrained to be zero. However, this assumption is not
appropriate for nonstationary signals such as speech and music
signals, because they have the inter-frequency correlation.

Unlike ILRMA and IDLMA, on the other hand, IPSDTA
can consider the inter-frequency correlation by modeling
FCMs by PSDTF. However, since PSDTF represents time-
varying FCMs by a convex cone of a few positive definite
bases, it severely restricts model flexibility and cannot accu-
rately capture the nonstationarity of FCMs.
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IV. PROPOSED SUPERVISED METHOD: IDLTA

To overcome the problems described in Section III-C and
improve the separation performance of conventional methods,
we propose a new supervised method called IDLTA, which
represents the time series of FCMs using DNNs and optimizes
Wi in (9) blindly. Here, we discuss in Section IV-A that it
is not appropriate to infer Rjn directly using DNNs, and in
Section IV-B, we explain the new proposed FCM model.

A. Optimal FCM

Consider the estimation of the FCM for the source signal
~sjn := (s1jn, . . . , sIjn)

> ∈ CI . Suppose that ~sjn follows a
multivariate complex Gaussian distribution with the zero mean
and covariance matrix Rjn as follows:

log p(~sjn | Rjn)
c
= −~sHjnR−1jn~sjn − log detRjn. (13)

In this case, the maximum likelihood estimation of Rjn is
given by Rjn = ~sjn~s

H
jn. This implies that an optimal FCM is

of rank-1.
Training DNN to maximize (13) is numerically unstable in

the vicinity of the optimal FCM since (13) diverges to infinity
when Rjn = ~sjn~s

H
jn. In addition, when Rjn inferred using

DNN is almost a rank-1 matrix, the separated signal ~yjn is
estimated only in the direction close to the eigenvector for
the largest eigenvalue of Rjn. This is because the second
term in the objective function (9) with ~yjn parallel to the
other eigenvectors of Rjn becomes quite large and Wi is
not estimated properly. In this sense, it is not appropriate to
estimate the optimal FCM directly using DNNs.

B. Proposed FCM

In our proposed model, each FCM in (5)–(8) is represented
as a convex combination of a diagonal FCM and a rank-1
FCM as follows:

Rjn = (1− α)Rdiag
jn + αRrank1

jn , (14)

where 0 ≤ α ≤ 1 and

Rdiag
jn := diag

{
d21jn, . . . , d

2
Ijn

}
, (15)

Rrank1
jn := ~zjn~z

H
jn, (16)

~zjn := (z1jn, . . . , zIjn)
> ∈ CI . (17)

The first term of (14), i.e., Rdiag
jn , can be viewed as the source

power spectrum in the same manner as in IDLMA (see Section
III-A). On the other hand, as we explain in Section IV-A, the
second term of (14), i.e., Rrank1

jn , is equivalent to the source
signal. In particular, the proposed FCM with α = 1 is an
optimal FCM in some respect. Since this Rjn has non-zero
off-diagonal elements, it can be used to consider the inter-
frequency correlation to some extent.

In the proposed IDLTA, Rdiag
jn is inferred using a pretrained

DNN for estimating the power spectrum in the same manner
as in IDLMA:

{Rdiag
jn }j = DNNdiag(Yn). (18)

Fig. 1. Schematic diagram of the proposed IDLTA.

On the other hand, ~zjn is inferred using a pretrained DNN for
estimating the separated signals in the time domain:

{~zjn}j = STFT
(
DNNtime-domain(ISTFT(Yn))

)
. (19)

Here, ISTFT means the inverse STFT. For instance, TasNet
[21] and MRDLA [22], [23] can be used for DNNtime-domain to
estimate ~zjn. Note that the input of both DNNs is the separated
signal Yn in IDLTA.

C. Related research

To reduce the computational cost of PSDTF, the acceleration
of PSDTF has been proposed by approximating each basis
Ukn in (12) as the sum of a diagonal matrix and a low-
rank matrix [20]. Since this approach further restricts the
structure of FCMs estimated by PSDTF, it cannnot capture
the nonstationarity of FCMs in the same manner as in PSDTF.
In contrast, the proposed model of FCMs not only takes into
account the time variability of FCMs but can also be estimated
accurately using two DNNs.

V. ALGORITHM FOR IDLTA

We develop an algorithm for IDLTA that updates Rjn

and Wi alternately. Figure 1 shows a schematic diagram of
IDLTA. The algorithm procedure is as follows:

1) Initialize W1, . . . ,WI as the identity matrix.
2) Iterate the following steps until convergence:

a) Compute the separated signals as yij = Wixij .
b) Infer FCMs as described in Section IV-B.
c) Update {win}i,n as described in Section V-A.

A. Optimization of demixing matrix Wi

We explain that the problem of minimizing L with respect
to Wi when Rjn is kept fixed can be solved by an algorithm
called vectorwise coordinate descent (VCD) [15], which has
been developed for the conventional IPSDTA [17]. VCD is a
block coordinate descent method that cyclically update win

for each i = 1, . . . , I and n = 1, . . . , N one by one. When
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we regard wi′n (i′ 6= i) as a constant, the objective function
L with respect to win is expressed as

1

J
L c
=

N∑
n=1

(
wH
inQinwin +wH

inγin + γH
inwin

)
− log |detWi|2, (20)

Qin =
1

J

J∑
j=1

[
R−1jn

]
ii
xijx

H
ij , (21)

γin =
1

J

J∑
j=1

 ∑
i′∈{1,...,I}\{i}

[
R−1jn

]
i′i
xH
i′jwi′n

xij . (22)

Here, [·]i′i denotes the (i′, i)th element of the matrix. As
shown in [17], the problem of minimizing L with respect to
win when all the other variables are kept fixed can be globally
solved as

ζin ← (WiQin)
−1
en, (23)

ζ̂in ← Q−1in γin, (24)

ηin,← ζHinQinζin, (25)

η̂in ← ζHinQinζ̂in, (26)
win

←


ζin√
ηin
− ζ̂in (η̂in = 0)

η̂in
2ηin

(
1−

√
1 + 4ηin

|η̂in|2

)
ζin − ζ̂in (otherwise),

(27)

where en is the unit vector whose nth element is 1 and other
elements are 0.

B. Acceleration of VCD

We here newly develop an algorithm that accelerates VCD
presented in Section V-A by exploiting that Rjn is the sum of
a diagonal matrix and a rank-1 matrix. Using the Sherman–
Morrison formula [24], we compute the R−1jn required in (21)
and (22) as

R−1jn =
1

1− α

{(
Rdiag
jn

)−1
− αẑjnẑHjn

}
, (28)

ẑjn = ξjn ·
(
Rdiag
jn

)−1
~zjn, (29)

ξjn =

(
1− α+ α

I∑
i=1

|zijn|2

d2ijn

)− 1
2

. (30)

Here, Rdiag
jn and ~zjn are defined by (15) and (17), respectively.

Note that R−1jn can be calculated by the element-wise inverse.
With this efficient formula, we can greatly reduce the compu-
tational cost of the original VCD in the proposed IDLTA.

VI. EXPERIMENTS

A. Conditions

We carried out an experiment of separating music signals
in the case of N =M = 2, and compared the following four
methods:

Fig. 2. Spatial arrangements of sources and microphones.

• MRDLA [22], [23]: a monaural separation DNN. (Unlike
[22], the input and output of MRDLA are monaural and
the sampling frequency is 8 kHz.)

• IDLMA [14], [15]: identical to IDLTA with α = 0.
• Proposed IDLTA.
• FSCM+DNN [25]: the well-known supervised method

that estimates the full-rank spatial covariance matrix
(FSCM), which represents the mixing system, using the
source spectra inferred by DNNdiag.

We implemented DNNdiag in IDLMA and IDLTA in the same
manner as in [14]. We used MRDLA as DNNtime-domain.

We used the MUSDB18 dataset [26] for DNN training
and performance evaluation. 100 songs were used to train
DNNs, and an other 25 songs were used to evaluate the
performance. All signals were down-sampled to 8 kHz. In the
evaluation, the length of the observation signal was 30 s. To
simulate reverberant signals, the impulse responses of E2A
(T60 = 300 ms) obtained from RWCP Sound Scene Database
in Real Acoustical Environments [27] were convoluted with
each source signal. We prepared three types of mixture: bass
and vocals (Ba./Vo.); vocals and drums (Vo./Dr.); and drums
and bass (Dr./Ba.). The spatial arrangements of sources and
microphones for synthesized observation signals are shown in
Fig. 2.

In MRDLA, the reference channel signal of the multichan-
nel observation was used as the monaural input. In IDLMA,
IDLTA, and FSCM+DNN, the number of iterations to update
the spatial parameters (demixing matrices and FSCMs) was
set to 100, and FCMs were updated after every 10 iterations
of updating the spatial parameters. In IDLMA and IDLTA, the
demixing matrix Wi was initialized as the identity matrix. The
STFT was performed using a 512-ms-long Hamming window
and a 256-ms-long shift. In all methods, the performance was
evaluated using the average signal-to-distortion ratio (SDR)
[28] improvement over all songs and spatial arrangements.

B. Results

Table I shows the comparison of the SDR improvement
among MRDLA, IDLMA, and IDLTA. In IDLTA, FCMs
are inferred using DNNs as described in VI-A. Except for
α = 0.99, IDLTA outperformed the separation performance of
MRLDA and IDLMA. In particular, the highest SDR improve-
ment was observed at α = 0.5 for Ba./Vo. and Vo./Dr. and at
α = 0.3 for Dr./Ba. This result confirms the effectiveness
of IDLTA considering the inter-frequency correlation. The
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TABLE I
AVERAGE SDR IMPROVEMENT OF VARIOUS METHODS [dB]

MRDLA FSCM+DNN IDLMA Proposed IDLTA
(monaural) α = 0.01 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9 α = 0.99

Ba./Vo. 9.97 12.61 13.65 14.24 14.56 15.09 15.28 15.21 14.66 10.52
Vo./Dr. 8.32 7.40 11.21 13.72 14.04 14.83 15.04 14.79 13.40 9.65
Dr./Ba. 5.42 4.39 5.21 7.08 8.25 9.16 9.11 8.44 6.73 3.94
average 7.91 8.13 10.02 11.68 12.28 13.03 13.15 12.81 11.60 8.04

decrease in separation performance for α = 0.99 can be
attributed to the fact that Rjn is almost ~zjn~z

H
jn and the

separated signal is estimated only in the direction close to ~zjn,
as described in Section IV-A. The performance of α = 0.99
is almost the same as that of MRDLA, which confirms the
validity of this discussion.

VII. CONCLUSION

We proposed a new supervised audio source separation
method called IDLTA, which is an extension of the conven-
tional IDLMA to account for the inter-frequency correlation. It
is difficult to directly infer FCMs using DNNs. Therefore, we
also proposed a new FCM of source spectra, which is modeled
as a convex combination of two simple FCMs, and these two
FCMs are inferred using DNNs. By a numerical experiment of
separating music signals, we confirmed that IDLTA improves
the separation performance of IDLMA.
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